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Summary A new multivariate time series model with time varying conditional variances
and covariances is presented and analysed. A complete analysis of the proposed model is
presented consisting of parameter estimation, model selection and volatility prediction. Clas-
sical and Bayesian techniques are used for the estimation of the model parameters. It turns
out that the construction of our proposed model allows easy maximum likelihood estimation
and construction of well-mixing Markov chain Monte Carlo (MCMC) algorithms. Bayesian
model selection is addressed using MCMC model composition. The problem of accounting
for model uncertainty is considered using Bayesian model averaging. We provide implemen-
tation details and illustrations using daily rates of return on eight stocks of the US market.
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1. INTRODUCTION

The volatility of financial time series appears to change over time. One class of models that has
been developed to deal with this feature is the autoregressive conditional heteroscedastic (ARCH)
model introduced by Engle (1982), and extended by Bollerslev (1986) to the generalized ARCH
(GARCH) model. A large number of models has been proposed in the literature based on these
models; see, for example, the review article of Bollerslevet al. (1992).

The extension from univariate models to a multivariate framework is important because
the modelling of variances and covariances is crucial for multivariate financial models such
as the capital asset pricing model, portfolio allocation and risk management; see, for example,
Bollerslev et al. (1988), Ng (1991) and Gourieroux (1997). In the literature, formulations of
heteroscedastic multivariate models have been introduced by Kraft and Engle (1982), Engle
et al.(1984, 1990), Bollerslevet al.(1988), Diebold and Nerlove (1989), Bollerslev (1990), King
et al. (1994), Engle and Kroner (1995), Kroner and Ng (1998), Engle (2000), Klaassen (2000),
Alexander (2001) and Engle and Sheppard (2001) among others. Naturally, different multivariate
models impose different restrictions on the dynamic behaviour of the variances, covariances and
correlations.

Two major problems related to multivariate ARCH and GARCH models are the large number
of parameters to be estimated, and the difficulty of estimation due to the positive definiteness
restrictions on the covariance matrix. Factor ARCH–GARCH models have been introduced
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to solve these problems, providing a parsimonious parametrization and a positive definite
covariance matrix. The motivation for the factor models is commonality in the conditional
variance movements. Although, in some cases, financial and economic theories suggest such a
characteristic, the restrictions imposed by the factor ARCH–GARCH models on the dynamic
behaviour of the covariances and the correlations are quite strong, and may depend on the
number of factors. For example, in a two factor model, one would expect more dynamics in the
covariances and in the correlations than in a one factor model. High-dimensional applications of
factor models require Markov chain Monte Carlo (MCMC) methods; see, Chibet al. (1998) and
Han (2002) where 40 and 36 stocks are modelled respectively.

Recently, Klaassen (2000) and Alexander (2001) have suggested the construction of uncon-
ditionally uncorrelated linear combinations of the observed series based on principal component
analysis. Engle (2000) and Engle and Sheppard (2001) advocated the direct modelling of con-
ditional correlations. All these approaches are promising in the sense that they can model high-
dimensional observed series. For example, Engle and Sheppard (2001) model a 100-dimensional
set of stock indices. More details about these models are presented in Section 2.2.

In this study, we propose a new parametrization of a multivariate GARCH model, where the
covariance matrix is always positive definite, the number of parameters is relatively small, and
the model can be applied very easily to high-dimensional time series data. The estimation of
the parameters of the multivariate model is achieved by using classical and Bayesian techniques.
Maximum likelihood estimation is implemented using Fisher scoring. Our model construction is
such that the expected information matrix is obtained in closed form. According to the Bayesian
approach, we construct a Markov chain which has as a stationary distribution the posterior
distribution of the model parameters. Simulation of this Markov chain provides, after some burn-
in period and adequately many iterations, samples from the posterior distribution of interest; see,
for example, Smith and Roberts (1993) or Besaget al.(1995). We provide detailed guidelines on
how to construct the required Markov chain using a blocking sampling scheme in the Metropolis–
Hastings algorithm.

Bayesian model search is addressed using the MCMC model composition (MC3) method
of Madigan and York (1995) together with the delayed rejection algorithm (DRA) of Tierney
and Mira (1999). We base our inference on posterior model probabilities and account for model
uncertainty using Bayesian model averaging.

The remainder of the paper is organized as follows. The full-factor multivariate GARCH
model is introduced in Section 2. Classical and Bayesian implementation is presented in
Section 3. Bayesian model comparison and Bayesian model averaging techniques are presented
in Section 4. In Section 5 we illustrate the above methods in a dataset of eight stocks from the
US market, and we conclude in Section 6 with a brief discussion.

2. A FULL-FACTOR MULTIVARIATE GARCH MODEL

2.1. Description and properties of the model

Throughout the paper we consider having observed data of the form

yt , t = 1, . . . , T,
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where eachyt = (y1,t , . . . , yN,t )
′ is a N × 1 vector. The multivariate full-factor GARCH model

is given by the following equations:

yt = µ + εt ,

εt = WXt , (1)

Xt | 8t−1 ∼ NN(0, 6t ),

whereµ is aN × 1 vector of constants,εt is aN × 1 innovation vector,W is aN × N parameter
matrix,8t−1 is the information set up to timet −1, Xt is aN ×1 vector of factors with elements
xi,t , i = 1, . . . , N and6t is a N × N diagonal variance covariance matrix, which is given by
6t = diag(σ 2

1,t , . . . , σ
2
N,t ) with

σ 2
i,t = αi + bi x

2
i,t−1 + gi σ

2
i,t−1, i = 1, . . . , N, t = 1, . . . , T

andσ 2
i,t , i = 1, . . . , N is the variance of thei th factor at timet , αi > 0, bi ≥ 0, gi ≥ 0, i =

1, . . . , N. In other words the factorsxi,t , i = 1, . . . , N are GARCH(1, 1) processes. According
to the above model, the vectorεt is a linear combination of the factorsxi,t , i = 1, . . . , N.

Assuming that the vectorXt follows a conditional multivariate normal distribution,Xt |

8t−1 ∼ N(0, 6t ), then the vectorεt | 8t−1 ∼ N(0, Ht ), where

Ht = W6t W
′
= W6

1/2
t 6

1/2
t W′

= (W6
1/2
t )(W6

1/2
t )′ = LL ′. (2)

Equation (2) presents the conditional covariance matrixHt of the vectorεt . 6
1/2
t is the

diagonal matrix with elementsσ1,t , σ2,t , . . . , σN,t . It is well known that the decomposition of a
positive definite matrix into the product of a triangular matrix and its transpose always exists,
and this decomposition is unique if the diagonal elements are restricted to be positive. So we can
takeW triangular with elementswi j = 0 for j > i andwi i > 0 for i = 1, . . . , N. In order to
reduce the number of parameters in our model, a natural restriction is to assume thatwi i = 1,
for i = 1, . . . , N. Note that similar constraints have been adopted by Geweke and Zhou (1996),
Chib et al. (1998) and Aguilar and West (2000) among others for the factor model. Under the
assumption that the matrixW is triangular with diagonal elements equal to unity, the conditional
covariance matrixHt can be written as

Ht = W6t W
′
=


h11,t h12,t h13,t · · · h1N,t

h21,t h22,t h23,t · · · h2N,t

h31,t h32,t h33,t · · · h3N,t
...

...
...

. . .
...

hN1,t hN2,t hN3,t · · · hN N,t



=



σ 2
1,t w21σ

2
1,t w31σ

2
1,t · · · wN1σ

2
1,t

w21σ
2
1,t

∑2
i =1 w2

2i σ
2
i,t

∑2
i =1 w2i w3i σ

2
i,t · · ·

∑2
i =1 w2i wNiσ

2
i,t

w31σ
2
1,t

∑2
i =1 w3i w2i σ

2
i,t

∑3
i =1 w2

3i σ
2
i,t · · ·

∑3
i =1 w3i wNiσ

2
i,t

...
...

...
. . .

...

wN1σ
2
1,t

∑2
i =1 wNiw2i σ

2
i,t

∑3
i =1 wNiw3i σ

2
i,t · · ·

∑N
i =1 w2

Niσ
2
i,t

 . (3)

From the construction of the model, the variance covariance matrixHt is always positive definite
if the factor variancesσ 2

i,t , i = 1, . . . , N are well defined. Note also that the factorsxi,t ,
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i = 1, . . . , N have zero idiosyncratic variances so they are not parameters to be estimated but
are given byXt = W−1εt . Therefore, forN = 1 the model reduces to the GARCH(1, 1)
model.

Under the assumption of a multivariate normal distribution for the vectorXt , the likelihood
for model (1), for a sample ofT observationsy = (y1, y2, . . . , yT ), can be written as

l (y | θ) = (2π)−
T N
2

T∏
t=1

|Ht |
−1/2 exp

[
−

1
2

T∑
t=1

(yt − µ)′H−1
t (yt − µ)

]
.

In the following, we will assume for convenience thatxi,0 and σ 2
i,0 are known,bi = b and

gi = g for i = 1, . . . , N. These assumptions can be relaxed without adding much difficulty in the
estimation process. For example, Vrontoset al. (2000) discuss Bayesian estimation of GARCH
and EGARCH models when the variance at time zero is unknown. Under these assumptions, the
number of parameters to be estimated for aN-dimensional problem is 2N + 2+

N(N−1)
2 and the

parameter vector isθ = (µ1, µ2, . . . , µN, α1, α2, . . . , αN, b, g, w21, w31, w32, . . . , wN1, . . . ,
wN,N−1)

′.
Bollerslev (1986) presents the necessary and sufficient conditions for the existence of the

2mth moment of the GARCH(1, 1) model and the conditions for the wide-sense stationarity
of the GARCH model. We can take advantage of these results for the full-factor multivariate
GARCH model we propose. First note thatHt = W6t W′ and vec(Ht ) = vec(W6t W′) =

(W⊗W)vec(6t ), where vec(.) denotes the vector operator that stacks the columns of the matrix.
That is, the variances and the covariances in our model are linear combinations of the variances
σ 2

i,t , i = 1, . . . , N of the factors. But according to our modelxi,t , i = 1, . . . , N are independent
GARCH(1, 1) processes. Therefore, the unconditional variances and covariances of the full-
factor multivariate GARCH model are linear combinations of the unconditional variances of the
GARCH(1, 1) processesxi,t , i = 1, . . . , N. Definewt = vech(Ht ), where vech(.) denotes the
column stacking operator of the lower portion of a symmetric matrix. That is,wt = vech(Ht ) =

(h11,t , h21,t , h22,t , h31,t , h32,t , h33,t , . . . , hN1,t , hN2,t , hN3,t , . . . , hN N,t )
′ is a N(N + 1)/2 × 1

vector. After straightforward calculations and using the results of Bollerslev (1986), the uncon-
ditional variances and covariances are given byE(wt ) =

1
1−b−g

(
α1, w21α1,

∑2
i =1 w2

2i αi , w31α1,∑2
i =1 w3i w2i αi ,

∑3
i =1 w2

3i αi , . . . , wN1α1,
∑2

i =1 wNiw2i αi ,
∑3

i =1 wNiw3i αi , . . . ,
∑N

i =1

w2
Niαi

)′.

2.2. Some comments on the model

The proposed model can be considered as a full-factor model with zero idiosyncratic variances.
Different factor models have been proposed in the literature, and have been analysed by many
researchers using either an ARCH–GARCH framework (see, for example, Diebold and Nerlove
(1989), Engleet al. (1990), Kinget al. (1994)) or a stochastic volatility framework (see, for
example, Chibet al. (1998), Aguilar and West (2000)). In particular, Harveyet al. (1994)
proposed a factor representation that can be extended to a full-factor structure similar to ours, but
they proposed modelling the factors as stochastic volatility rather than GARCH(1, 1) processes.
We have not empirically investigated in detail the advantages and disadvantages of the full-factor
representation with zero idiosyncratic variances for the factor models above.

The structure of our model resembles that of Alexander (2001) and of Klaassen (2000).
Alexander’s intent is the classical principal component target of reducing the data from a ‘portfo-
lio’ of k series to an ‘underlying’ driving force of 2–3 series of principal components. To achieve
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this, Alexander proposes a linear transformation of the data by using an orthogonal matrix of
eigenvectors derived from the sample correlation matrix. Thus, the principal components are
only unconditionally uncorrelated. In contrast, our intent is to model a GARCH effect on the
(conditional) correlations in a parsimonious manner. The linear transformation (1) uses a trian-
gular matrixW (which needs to be estimated jointly with the GARCH processes) which produces
conditionally uncorrelated factorsxi,t , i = 1, . . . , N.

In our model, the conditional correlations are given by

ρ jk,t =

∑min{ j,k}

i =1 w j i wkiσ
2
i,t(∑ j

i =1 w2
j i σ

2
i,t

)1/2(∑k
i =1 w2

kiσ
2
i,t

)1/2
,

a non-linear function of allσ 2
i,t , i = 1, . . . , max{ j, k}, which preserves the positive-definiteness

of Ht . Thus, the model can be viewed as a generalization of the constant correlation coefficient
model of Bollerslev (1990).

Denoting byRt the correlation matrix with elementsρ jk,t , (3) can be written in the form
advocated by Engle (2000)

Ht = Dt Rt Dt ,

where Dt = diag(h1/2
11,t , h1/2

22,t , . . . , h1/2
nn,t ). Engle suggests modellingDt and Rt separately

imposing GARCH effects onhi i ,t and a parsimonious formulation forRt . Whereas our
conditional correlation (3) depends onW and past values ofXt and σ 2

t of other returns
(depending on the order imposed), Engle’s conditional correlation depends onρi j ,t−1, on
unconditional correlations and on squares of past standardized residuals.

An empirical comparative study that investigates the extent to which these models capture
empirical conditional correlation structures is the subject of current research and will be reported
elsewhere.

The structure of the conditional covariance matrixHt in equation (3) implies that the order
of the components of the time series in theyt vector affects the conditional variances and
covariances. The ordering has an impact in model fitting and assessment; see, for example,
Aguilar and West (2000). We solve this important practical issue using the MCMC model
composition (MC3) method that generates a process that moves through model space and the
Delayed Rejection Algorithm (DRA). Moreover, these methods provide an idealized way to
extract posterior model probabilities and to construct predictive densities that take into account
model uncertainty.

3. INFERENCE FOR A GIVEN MODEL

In this section we consider classical and Bayesian techniques for the estimation of the parameters
of the full-factor multivariate GARCH model.

3.1. Classical approach

Maximum likelihood estimates for heteroscedastic models are usually obtained by using
numerical optimization algorithms such as scoring algorithm, the method proposed by Mak
(1993) and developed further by Maket al.(1997) and by Berndtet al.(1974). Here, we compute
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the maximum likelihood estimates using the Fisher scoring algorithm. Thekth iteration of the
algorithm takes the form

θ̂
k

= θ̂
k−1

+

{
−E

[
∂2LT

∂θ∂θ ′

]}−1
∂LT

∂θ
, (4)

whereθ̂
k−1

is the estimate of the parameter vector obtained afterk − 1 iterations,LT is the log-

likelihood function,−E
[

∂2LT
∂θ∂θ ′

]
is the expected information matrix̂I computed at̂θ

k−1
, and∂LT

∂θ

is the gradient computed atθ̂
k−1

. One of the great advantages of our model is, we believe, the fact
that the gradient and the expected information matrix in (4) are available in closed forms. This
is not surprising since, by construction, our model consists of a linear combination of univariate
GARCH models in which such a property exists. The motivation for using the Fisher scoring
algorithm in our full-factor multivariate GARCH model comes from the results of other research
into GARCH models. For example, Fiorentiniet al. (1996) computed the analytic conditional
expected information matrix of the parameters for the GARCH(p, q) model and constructed a
mixed-gradient algorithm in order to accelerate the convergence. According to their results, the
superiority of gradient algorithms, which use the estimated information matrix, is clear in early
iterations. Watson and Engle (1983) used the method of scoring and the EM algorithm for the
estimation of dynamic factor, mimic and varying coefficient regression models. They suggest, for
practical methods, a mixed EM and scoring algorithm, and the use of the scoring algorithm for
inference. Similar are the results of the experiments of Demos and Sentana (1998), who present
an EM algorithm for conditionally heteroscedastic factor models and propose a quasi-Newton
algorithm for later iterations.

For the full-factor multivariate GARCH model (1) the log likelihood function is given by

LT (y | θ) = −
T N

2
ln(2π) −

1

2

T∑
t=1

ln |Ht | −
1

2

T∑
t=1

(yt − µ)′H−1
t (yt − µ)

= −
T N

2
ln(2π) −

1

2

T∑
t=1

ln |W6t W
′
| −

1

2

T∑
t=1

(yt − µ)′(W6t W
′)−1(yt − µ)

= −
T N

2
ln(2π) −

1

2

T∑
t=1

ln |6t | −
1

2

T∑
t=1

X′
t6

−1
t Xt , whereXt = W−1(yt − µ),

= −
T N

2
ln(2π) −

1

2

T∑
t=1

[
N∑

i =1

[ln(σ 2
i,t )]

]
−

1

2

T∑
t=1

[
N∑

i =1

[
x2

i,t

σ 2
i,t

]]
,

whereθ = (µ1, µ2, . . . , µN, α1, α2, . . . , αN, b, g, w21, w31, w32, . . . , wN1, . . . , wN,N−1)
′, and

αi > 0, i = 1, . . . , N, b ≥ 0, g ≥ 0. In order to avoid these positivity restrictions, we
transform the positive parameters using the logarithmic transformation, that is,α∗

i = ln(αi ),
b∗

= ln(b) and g∗
= ln(g). We also divide the parameter vector into three blocks. The

first block contains the parameters of the mean equation, that isθ1 = (µ1, µ2, . . . , µN)′,
the second block contains the transformed parameters of the variance equation, that is,θ2 =

(α∗

1, α∗

2, . . . , α∗

N, b∗, g∗)′, and the third block contains the parameters in matrixW, that is,θ3 =

(w21, w31, w32, . . . , wN1, . . . , wN,N−1)
′. The expected information matrix is block diagonal and

the three diagonal blocks are estimated by−E
[

∂2LT
∂θ1∂θ ′

1

]
, −E

[
∂2LT

∂θ2∂θ ′

2

]
and−E

[
∂2LT

∂θ3∂θ ′

3

]
. After the
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transformation of the positive parameters, the variancesσ 2
i,t of the factorsxi,t , i = 1, . . . , N, are

given by

σ 2
i,t = eα∗

i + eb∗

x2
i,t−1 + eg∗

σ 2
i,t−1, i = 1, . . . , N, t = 1, . . . , T.

Some assumptions are also required for the initial values of the variancesσ 2
i,t and the squared

factorsx2
i,t , as the variance equation of GARCH(1, 1) model is dynamic. Fort = 0, σ 2

i,0 = 0,

while thex2
i,0 are calculated by using a sufficient number of observations from the sample.

Differentiating with respect to the mean parametersθ1 = (µ1, µ2, . . . , µN)′ yields

∂LT

∂θ1
=

T∑
t=1

{
N∑

i =1

[
1

2σ 2
i,t

∂σ 2
i,t

∂θ1

(
x2

i,t

σ 2
i,t

− 1

)
−

(
xi,t

σ 2
i,t

∂xi,t

∂θ1

)]}
,

and the expected Information matrix for the first block is given by

Î1 = −E

[
∂2LT

∂θ1∂θ ′

1

]
=

T∑
t=1

{
N∑

i =1

[
1

2(σ 2
i,t )

2

∂σ 2
i,t

∂θ1

∂σ 2
i,t

∂θ ′

1
+

1

σ 2
i,t

∂xi,t

∂θ1

∂xi,t

∂θ ′

1

]}
,

where
∂σ 2

i,t

∂θ1
= 2eb∗

xi,t−1
∂xi,t−1

∂θ1
+ eg∗ ∂σ 2

i,t−1

∂θ1
, i = 1, . . . , N

and the derivatives ofxi,t , i = 1, . . . , N, with respect to the mean parametersθ1 are given by

the rows of the−W−1 matrix. That is,∂x1,t
∂θ1

is given by the first row of the−W−1 matrix, ∂x2,t
∂θ1

is given by the second row of the−W−1 matrix, and so on.
Differentiating with respect to the variance parametersθ2 = (α∗

1, α∗

2, . . . , α∗

N, b∗, g∗)′ yields

∂LT

∂θ2
=

T∑
t=1

{
N∑

i =1

[
1

2σ 2
i,t

(
x2

i,t

σ 2
i,t

− 1

)
∂σ 2

i,t

∂θ2

]}
,

while the expected information matrix for the second block is given by

Î2 = −E

[
∂2LT

∂θ2∂θ ′

2

]
=

T∑
t=1

{
N∑

i =1

[
1

2(σ 2
i,t )

2

∂σ 2
i,t

∂θ2

∂σ 2
i,t

∂θ ′

2

]}
,

where
∂σ 2

i,t

∂θ2
= ci,t + eg∗ ∂σ 2

i,t−1

∂θ2
, i = 1, . . . , N

and the vectorsci,t , i = 1, . . . , N, can be calculated very easily. For example,c1,t = (eα∗

1 ,

0, . . . , 0, eb∗

x2
1,t−1, eg∗

σ 2
1,t−1)

′, c2,t = (0, eα∗

2 , 0, . . . , 0, eb∗

x2
2,t−1, eg∗

σ 2
2,t−1)

′, . . . , cN,t =

(0, . . . , 0, eα∗
N , eb∗

x2
N,t−1, eg∗

σ 2
N,t−1)

′.
Differentiating with respect to the parameters in matrixW, that is, with respect toθ3 =

(w21, w31, w32, . . . , wN1, . . . , wN N−1)
′, yields

∂LT

∂θ3
=

T∑
t=1

{
N∑

i =1

[
1

2σ 2
i,t

∂σ 2
i,t

∂θ3

(
x2

i,t

σ 2
i,t

− 1

)
−

(
xi,t

σ 2
i,t

∂xi,t

∂θ3

)]}
,
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and the expected information matrix for the third block is given by

Î3 = −E

[
∂2LT

∂θ3∂θ ′

3

]
=

T∑
t=1

{
N∑

i =1

[
1

2(σ 2
i,t )

2

∂σ 2
i,t

∂θ3

∂σ 2
i,t

∂θ ′

3
+

1

σ 2
i,t

∂xi,t

∂θ3

∂xi,t

∂θ ′

3

]}
,

where
∂σ 2

i,t

∂θ3
= 2eb∗

xi,t−1
∂xi,t−1

∂θ3
+ eg∗ ∂σ 2

i,t−1

∂θ3
, i = 1, . . . , N.

The factorsxi,t , i = 1, . . . , N, are given byXt = W−1εt . Thus,

∂Xt

∂wi j
=

[
−W−1 ∂W

∂wi j
W−1

]
εt ,

and therefore the derivatives ofxi,t , i = 1, . . . , N, with respect towi j are given by thei th
element of the vector

[
−W−1 ∂W

∂wi j
W−1

]
εt . For example, the derivative ofx1,t with respect to the

parameterwN1 is given by the first element of the vector
[
−W−1 ∂W

∂wN1
W−1

]
εt , and so on.

Having calculated the three blocks−E
[

∂2LT
∂θ i ∂θ ′

i

]
, i = 1, 2, 3 of the block diagonal expected

information matrixÎ , and the gradients∂LT
∂θ i

, i = 1, 2, 3, one can find the maximum likelihood
estimates by applying the Fisher scoring algorithm of equation (4). From our experience of
different datasets, the estimates given by the Fisher scoring algorithm (4) are robust to different
initial values for the model parameters, and the inverse of the expected information matrix
provides estimates of the covariance matrix of the parameters. The above strategy enables us to
investigate more deeply the behaviour of covariance matrix estimators. For example, we can very
easily evaluate the covariance estimate proposed for dynamic and conditional heteroscedastic
models by Bollerslev and Wooldridge (1992). This covariance estimate can be written as

BW = ( Î −1)(O P)( Î −1) (5)

where Î −1 is the inverse of the expected information matrix, andO P is the matrix of outer
products of the first derivatives of the log-likelihood, which can be constructed as

O P =

T∑
t=1

[
∂L t

∂θ

][
∂L t

∂θ ′

]
,

where∂L t
∂θ

is the derivative of the log-likelihood with respect to the parameter vectorθ at timet .
Under misspecification of the conditional density of the process (non-Gausian distribution) the
estimate of the variance covariance matrix given by Bollerslev and Wooldridge (1992) is more
robust and superior compared to other covariance estimators; see, for example, Fiorentiniet al.
(1996).

3.2. Bayesian approach

This section presents the Bayesian approach for estimating the parameters of the proposed full-
factor multivariate GARCH model using MCMC methods. The general formulation is as follows:
suppose that, for a given parameter vectorθ ∈ Rn and datay, we want to generate a sample from
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the posterior distributionπ(θ | y), which is known up to a constant of proportionality. The
idea is based on the construction of an irreducible and aperiodic Markov chain, which is easily
simulated, with realizationsθ1, θ2, . . . , θ t , . . . in the parameter space, equilibrium distribution
π(θ | y) and a transition probabilityK (θ ′′, θ ′) = π(θ t+1

= θ ′′
| θ t

= θ ′), whereθ ′ andθ ′′

are the realized states at timet andt + 1 respectively. Under appropriate regularity conditions,
asymptotic results guarantee that ast → ∞, θ t tends in distribution to a random variable with
densityπ(θ | y), and the ergodic average of an integrable functionf of θ is a consistent estimator
of the (posterior) mean of the function. That is,

θ t d
→ θ ∼ π(θ | y) and

1

t

t∑
i =1

f (θ i )
t→∞
→ Eθ |y[ f (θ)] almost surely.

See, for example, Smith and Roberts (1993), Besaget al. (1995) and Gilkset al. (1996).
We adopt the Metropolis–Hastings algorithm to obtain a sample from the posterior distribu-

tion of interest. There are many possible choices of the transition kernelK which lead to different
sampling schemes. A simple strategy is to usen independent Metropolis steps (Tierney (1994),
Chib and Greenberg (1995)) for allθi , i = 1, 2, . . . , n, and a usual approach is to adopt a random
walk chain with an increment normal densityN(0, σ 2) where the varianceσ 2 is appropriately
chosen so that the convergence of the MCMC sampler is as fast as possible. In this sampling
scheme, the parameters are updated one at a time (single component update), making the algo-
rithm time consuming, particularly in high-dimensional datasets.

In our proposed model, the convergence of the MCMC algorithm is accelerated by reparame-
trizing the positive parameters to ‘near normality’ and by using a blocking sampling scheme as in
Vrontoset al.(2000). We use (as in the maximum likelihood approach) three blocks consisting of
the mean parameters, the variance parameters and the parameters in matrixW. In this blocking
sampling scheme, we use the results from the classical approach. That is, we start from the
maximum likelihood estimates and update the parameters in each block from timet to time
t + 1 by using three multivariate Normal proposal densitiesN

(
θ t

i , c6̂θi

)
, i = 1, 2, 3 with θ t

i
denoting the vector of parameters in blocki with values at timet , c a constant to tune the
acceptance rate, and̂6θi the variance covariance estimate of the parameters in blocki taken from
the Fisher scoring algorithm or taken from the method proposed for dynamic and conditional
heteroscedastic models by Bollerslev and Wooldridge (1992). We found that for the first two
blocks the algorithm works very well with either proposal, whereas for the third block the latter
proposal density performed better. This occurred because Fisher scoring produced many zero
values in the off-diagonal elements of the covariance matrix ofθ3.

Finally, it is worth mentioning that if filtering, rather than smoothing, of the GARCH process
is of interest, our MCMC algorithm can be easily adapted to perform such an exercise; see, for
example, Pitt and Shephard (1999) and Kimet al. (1998).

4. INFERENCE UNDER MODEL UNCERTAINTY

4.1. Bayesian model comparison

As described at the end of Section 2, the order of the univariate time series in theyt vector has an
impact on model fitting. We consider the problem of finding the ‘best’ ordering of the individual
time series under the proposed model. That is, the ordering becomes a modelling decision to be
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made on the basis of model fit. Given theN observed univariate time series in theyt vector, the
number of all possible models (all possible different orderings) isN!. Let M = {m1, . . . , mK }

be the set of all models, soK = N!. A typical approach is to carry out a model selection exercise
leading to a single ‘best’ model (‘best’ ordering) and then make inferences as if the selected
model was the true model. However, this ignores the uncertainty involved in model selection.
A Bayesian solution to this problem involves the calculation of the posterior probabilities of all
the competing models. The posterior probability of modelmk is given by

π(mk | y) =
π(y | mk)π(mk)∑K
i =1 π(y | mi )π(mi )

, (6)

where

π(y | mk) =

∫
π(y | θk, mk)π(θk | mk)dθk (7)

is the marginal likelihood of modelmk, θk is the vector of parameters of modelmk, π(y | θk, mk)

is the likelihood given modelmk, π(θk | mk) is the prior density ofθk under modelmk, and
π(mk) is the prior probability for modelmk. Inference about the model selection problem may
be performed using the Bayes factor(BF) of modelmi against modelm j , given by

BF =
π(y | mi )

π(y | m j )
=

π(mi | y)

π(m j | y)

π(m j )

π(mi )
. (8)

4.2. Bayesian model averaging

Having been able to calculate the posterior probabilities (6) of each model, it seems natural to
account for model uncertainty in our predictive inferences. Rather than choosing a single ‘best’
model and then making inferences as if the selected model was the true model, we can use the
following model averaging approach, which provides composite predictions. Suppose that we
are interested in a quantity1. For example, in time varying volatility models this quantity may
be the variances and the covariances at a future time period. Then, its posterior distribution given
datay is given by

π(1 | y) =

K∑
i =1

π(1 | mi , y)π(mi | y), (9)

which is an average of the posterior predictive distributions under each model weighted by
their posterior model probabilities. The posterior predictive distribution of1 given a particular
modelmi is found by integrating out the model parametersθ i :

π(1 | mi , y) =

∫
π(1 | θ i , mi , y)π(θ i | mi , y)dθ i .

We can also use the maximum likelihood approximation

π(1 | mi , y) ' π(1 | mi , y,θ̂ i ), (10)

whereθ̂ i is the maximum likelihood estimator of the parameter vectorθ i of modelmi ; see, for
example, Volinskyet al. (1997). For discussion of the above approach as well as evidence that
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accounting for model uncertainty improves predictive performance see Kass and Raftery (1995),
Draper (1995) and Rafteryet al. (1997).

Implementation of Bayesian model comparison and Bayesian model averaging is difficult for
two reasons. First, the Bayes factor can be hard to compute, and second, the number of competing
models in equations (6) and (9) can be enormous.

4.3. Calculation of the Bayes factor

The Bayes factor requires evaluation of the integrals in the numerator and denominator of (8)
which are the marginal densitiesπ(y | mi ) and π(y | m j ). These integrals are in general
difficult to calculate; Kass and Raftery (1995) provide an extensive description and comparison
of available numerical strategies. Here, we describe Laplace’s method and a variant of Laplace’s
method, which is used in the full-factor multivariate GARCH model.

The Laplace’s method of approximation of (7) is given by

π(ŷ | mk) = (2π)dθk/2
|6̃|

1/2π(y | θ̃k, mk)π(θ̃k | mk), (11)

where dθk is the dimension of the parameter vectorθk of model mk, π(y | θ̃k, mk) and
π(θ̃k | mk) are the likelihood and the prior, respectively, evaluated at the posterior modeθ̃k,
6̃ = [−∂2l̃ (θk)]

−1, ∂2l̃ (θk) is the Hessian matrix of second derivatives ofl̃ (θk), where
l̃ (θk) = log[π(y | θk, mk)π(θk | mk)]. According to Kass and Raftery (1995), when Laplace’s
method is applied to both the numerator and denominator of (8), the resulting approximation has
relative error of orderO(T−1).

An important variant of (11) is

π(ŷ | mk)mle = (2π)dθk/2
|6̂|

1/2π(y | θ̂k, mk)π(θ̂k | mk), (12)

where6̂ is the inverse of the negative Hessian matrix of the log-likelihood evaluated at the
maximum likelihood estimator̂θk, π(y | θ̂k, mk) andπ(θ̂k | mk) are the likelihood and the
prior, respectively, evaluated atθ̂k. The relative error of this approximation is again of order
O(T−1). Another alternative is to use the inverse of the expected information matrix in place of
6̂ in equation (12). The resulting approximation has a larger asymptotic relative error of order
O(T−1/2), but (see Kass and Raftery, 1995) it remains sufficiently accurate to be of use in many
problems.

4.4. MCMC model search methods

In this section we describe some MCMC methods that provide posterior model probabilities and
therefore can account for model uncertainty using Bayesian model averaging.

4.4.1. Markov chain Monte Carlo model composition (MC3). MCMC model composition
(MC3) was introduced by Madigan and York (1995). MC3 generates a stochastic process that
moves through model space. We can construct a Markov chain{m(t), t = 1, 2, . . .} with state
spaceM and equilibrium distribution given by (6) and (7). If this Markov chain is simulated for
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t = 1, . . . , P, then under certain regularity conditions, for any functionf (mi ) defined on the
model space, the average

F̂ =
1

P

P∑
i =1

f (m(i ))

is a consistent estimate of theE[ f (m)]; see, for example, Smith and Roberts (1993). To compute
(9) in this way setf (m) = π(1 | m, y).

To construct the Markov chain we define a neighbourhood nbd(m) for each modelm. We
also define a transition matrixq by settingq(m → m′) = 0 for all m′ /∈ nbd(m) andq(m → m′)

constant for allm′
∈ nbd(m). If the current state of the chain is modelm thenm′ is drawn from

q(m → m′) and accepted with probability

min

{
1,

|nbd(m)|π(m′
| y)

|nbd(m′)|π(m | y)

}
, (13)

where |nbd(m)| is the number of models that belong in the neighbourhood of modelm.
Otherwise, the chain stays in statem. Note that, if|nbd(m)| = |nbd(m′)| and all models are
equally likelya priori then the probability of acceptance is given by

min

{
1,

π(y | m′)

π(y | m)

}
. (14)

In the application of the MC3 algorithm in Section 5 we take|nbd(m)| = |nbd(m′)| and assume
that all models are equally likelya priori, and therefore the probability of acceptance is given
by (14).

Different models come from the particular ordering of the univariate time series in theyt

vector. After extensive searching for proposal densities or, equivalently, neighbour definitions,
that provide an MCMC algorithm with good mixing in a series of problems, we found
that multimodalities in the model space is a very frequent phenomenon, so we suggest the
following neighbourhood definitions. Assume that we are looking for the neighbours of model
m = {m1, . . . , mi , . . . , m j , . . . , mk}. Let us denote by nbd31(m) all models of the form
{m1, . . . , m j , . . . , mi , . . . , mk} wheremi andm j have exchanged positions and they are at the
most three positions apart. To ensure reversibility, in a cyclic fashion we can also swapm1 with
mk or mk−1 or mk−2, and so on, fori ≤ 3 and j ≥ k−3. Moreover, define nbd32(m) as all models
in whichmi has been moved at most three positions to the left or right:

nbd3
2(m) = {m1, . . . , mi −2, mi , mi −1, mi +1, . . . , mk}

∪ {m1, . . . , mi −1, mi +1,mi , mi +2, . . . , mk}

∪ {m1, . . . , mi −3, mi , mi −2, mi −1, mi +1, . . . , mk}

∪ {m1, . . . , mi −1, mi +1, mi +2, mi , mi +3, . . . , mk}

∪ {m1, . . . , mi −4, mi , mi −3, mi −2, mi −1, mi +1, . . . , mk}

∪ {m1, . . . , mi −1, mi +1, mi +2, mi +3, mi , mi +4, . . . , mk},

dealing in an obvious cyclic fashion with the casesi ≤ 3 andi ≥ k − 3. The superscripts in
nbd3

1(m) and nbd32(m) denote that the neighbourhoods are based of distances of length 3. In our
example with eight time series we chose a neighbourhood as nbd4

= nbd4
1 ∪ nbd4

2, proposing
each model within nbd4, and taking care to have|nbd4(m)| = |nbd(m′)| in (13). As in every
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Metropolis–Hastings algorithm, the scaling of the proposals depends on the particular problem.
In our suggested algorithm, this scaling is tuned by the choice of superscriptl in nbdl

1 and nbdl2.
The neighbourhood nbd(m) of modelm consists of the set of models with either a change

in the position of two univariate time series or a move of time series to a different position. We
change a randomly chosen time series from one up to four positions to the left or to the right, and
we move a randomly chosen time series two or three or four positions to the left or to the right.
As an example, suppose that there are eight stocks in theyt vector, and that a modelm is given
by the following ordering of the univariate time series: 12345678. That is, the first stock is at
position 1, the second stock is at position 2, and so on. A change in the position of two univariate
time series could be, for example, 12375648, where we alter the positions of the time series 4
and 7. A move of time series to a different position is, for example,2341567, where we move
the time series of position 1 three positions to the right and the time series of positions 2, 3 and
4 one position to the left.

4.4.2. Delayed rejection algorithm. The idea of DRA was proposed by Tierney and Mira
(1999). This strategy improves the Metropolis–Hastings algorithm in the (Peskun, 1973) sense
that the resulting estimates have smaller asymptotic variance on a sweep by sweep basis. In
our case, it is also useful as it increases the probability of moving between local modes of the
posterior density.

When a Markov chain remains in the same state over successive iterations, the autocorrelation
of the realized chain increases together with the variance of the estimates. In a Metropolis–
Hastings algorithm this happens when the proposed candidate is rejected too often. Tierney
and Mira (1999) improved the Metropolis–Hastings algorithm by reducing the probability of
remaining in the current state using the following idea: when a candidate is rejected, instead of
staying at the current state, propose a new candidate from a different proposal distribution, and
accept or reject that candidate using an adjusted acceptance probability.

In our model selection exercise, we want to construct a Markov chain that moves through
model space. Suppose that the current state of the chain is modelm. Then, at the first stage,
modelm′ is drawn fromq(m → m′) and accepted with probability

min

{
1,

π(y | m′)

π(y | m)

}
.

If the candidate modelm′ is rejected, a new candidate modelm′′ is proposed fromq(m′
→ m′′)

at the second stage. That is, the new candidate modelm′′ depends only on the last rejected
candidatem′. Note that the neighbourhood of modelsm andm′, and the transitions from modelm
to m′, and fromm′ to m′′ are defined as in the previous section. All models are assumed equally
likely a priori. Tierney and Mira (1999) and Mira (2000) derived the probability of acceptance
for this candidate by imposing detailed balance at each stage, given by

min

{
1,

max{0, [π(y | m′′) − π(y | m′)]}

π(y | m) − π(y | m′)

}
.

This is a two-stage symmetric DRA.

5. APPLICATION TO EIGHT STOCKS FROM THE US MARKET

We illustrate the proposed full-factor multivariate GARCH model using 2350 daily observations
on eight stocks from the US stock market over the 1/1/1990–1/1/1999 period. IfSt is the value

c© Royal Economic Society 2003



324 I. D. Vrontos et al.

 ATT

R
at

es
 o

f R
et

ur
n

 AXP

R
at

es
 o

f R
et

ur
n

 C

R
at

es
 o

f R
et

ur
n

 GE

R
at

es
 o

f R
et

ur
n

 JPM

R
at

es
 o

f R
et

ur
n

 PG

R
at

es
 o

f R
et

ur
n

 RAL

R
at

es
 o

f R
et

ur
n

 WMT

R
at

es
 o

f R
et

ur
n

–0.10

0.0

0.10

0.05

–0.10

0.0

0.05

–0.05

0.0

0.05

–0.10

–0.05

0.0

0.05

–0.10

–0.05

0.0

0.05

–0.10

0.0

0.10

–0.10

0.0

0.05

–0.10

0.0

0.05

Figure 1. The analysed rates of return for the eight stocks of the US market.

of the stock at timet , then we model the rates of returnyt = ln
( St

St−1

)
, t = 1, . . . , T = 2349. In

Table 1, we present the summary statistics for the rates of return of the analysed stocks, together
with the Ljung–Box statistic computed for the rates of returnyt , for the absolute rates and for the
squares of the rates. The Ljung–Box statistic is computed using 50 lags and shows high level of
autocorrelation in the squares and the absolute values. In Figure 1, we present the analysed rates
of return for the eight stocks.

The key steps in our analysis are as follows. First, we ran the MC3 algorithm without delayed
rejection proposals (MC3 without DRA) and the two stage symmetric DRA (MC3 with DRA)
to find the ‘best’ ordering of the individual time series and the posterior model probabilities.
Second, we estimate the parameters of the ‘best’ model using classical and Bayesian approach.
Finally, we consider the problem of accounting for model uncertainty in the proposed time
varying volatility model. We make inferences about quantities of interest such as future variances
and covariances by using only the ‘best’ model, using a set of most probable models and using
Bayesian model averaging over all possible models.
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Table 1.Summary statistics for the rates of return of the analysed stocks.

Summary statistics

Rates of returnyt |yt | y2
t

Order Stocks Mean Stdev Kurtosis LB (50) LB (50) LB (50)

1 ATT 0.000 374 0.015 23 5.462 60.650 636.265 301.920

2 AXP 0.000 514 0.019 76 3.101 70.564 1107.453 1035.969

3 C 0.001 000 0.021 65 4.118 63.102 599.633 484.489

4 GE 0.000 785 0.013 55 2.536 82.068 928.415 877.401

5 JPM 0.000 371 0.016 50 3.279 80.431 1935.176 1893.695

6 PG 0.000 702 0.014 55 2.390 74.112 731.037 708.877

7 RAL 0.000 443 0.014 77 6.017 99.135 527.327 289.006

8 WMT 0.000 844 0.017 85 2.034 69.490 541.026 498.996

5.1. MCMC model search and convergence assessment

We apply the MC3 algorithm with and without DRA for 50 000 iterations in order to find the pos-
terior model probabilities. The subsampling methodology proposed by Giakoumatoset al. (1999)
is used to check the convergence of the MCMC output taken from the above algorithms. The
method is based on the use of subsampling for the construction of confidence regions for the
mean (in our case) of the unique invariant distribution of the Markov chain. We construct the
(1 − a)100% confidence regions for the mean(a = 0.05) based on different (increasing) values
N j = j N/100, j = 1, 2, . . . , 100, andN = 50 000 iterations. We estimate the ‘burn-in’ to be
N∗ if the ‘range’ of the confidence regions versus 1/

√
N j is approximately linear forN > N∗.

Linearity can be checked by using the coefficient of determination of a weighted linear regres-
sion between the dependent variable ‘range’ and 1/

√
N j , j = 1, 2, . . . , 100. According to the

subsampling convergence diagnostic, we stop the MCMC simulation when the range of this
(1− a)100% confidence region for the mean is appropriately small, smaller than some prespeci-
fied absolute or relative measure of accuracy; see, for details, Giakoumatoset al. (1999). We
focus our analysis on the 10 most probable models. Using MCMC chains ofN = 50 000 iter-
ations and choosing as threshold valued = 0.999 for the coefficient of determination in the
subsampling convergence diagnostic, we estimate the burn-in period. This turns out to be 17 500
iterations for both the MC3 with and without DRA (see Figure 2(a)). Note however that the accu-
racy, that is the range of the 95% confidence region for the mean, is 0.0727 and 0.0640 for MC3

with and without DRA, respectively. These findings confirm that MC3 with DRA improves the
Metropolis–Hastings algorithm in the sense that the resulting estimates have smaller asymptotic
variance (smaller accuracy) on a sweep by sweep basis.

The resulting posterior model probabilities of the MC3 with and without DRA are presented
in Table 2. The posterior model probabilities are calculated using 32 500 iterations; that is, we
have discarded the burn-in period of 17 500 iterations. The accuracy is the range of the 95%
confidence region of the mean. They are calculated by running the subsampling diagnostic
for each model using the MCMC output of 50 000 iterations. The ‘best’ model (ordering) is
14652873 with posterior probability 0.336 and 0.349 for the MC3 with and without DRA,
respectively. In total, 85 and 73 different models were visited during 50 000 iterations of MC3
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Figure 2. Coefficient of determination in the subsampling convergence diagnostic. The horizontal line
represents the threshold valued = 0.999. (a) Coefficient of determination for the model search problem;
(b) coefficient of determination for the parameters of a given model.

with and without DRA, respectively. For these estimates to be useful, we need to be confident
that the reason we are only observing a small fraction of possible models inM , 85 and 73 out of
40 320, is that other models have negligible posterior probability. Thus we ran the MC3 algorithm
starting from 50 different randomly chosen models. We also ran the two-stage symmetric DRA
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Table 2. Posterior model probabilities of the 10 most probable models using the MC3 algorithm with and
without DRA. The order of time series is given in Table 1. Figures in brackets are accuracy×100. Accuracy
is the range of the 95% confidence region for the mean.

Model MC3 without DRA MC3 with DRA

14 652 873 0.34 (7) 0.35 (6)

14 652 738 0.10 (3) 0.10 (3)

14 652 387 0.09 (3) 0.08 (2)

14 653 287 0.06 (2) 0.08 (3)

14 652 837 0.06 (2) 0.06 (2)

14 657 328 0.05 (3) 0.07 (3)

14 652 783 0.05 (2) 0.05 (2)

14 562 873 0.04 (3) 0.03 (2)

14 657 238 0.03 (2) 0.03 (2)

14 657 283 0.02 (1) 0.03 (2)

(MC3 with DRA) starting from the same 50 models; see, for details, Vrontos (2001). Both
methods seem to be very flexible since the algorithms arrive at the ‘best’ ordering very fast.
There was no evidence of the existence of any other regions of model space of high probability.
While this is no guarantee that such regions do not exist, it does provide some reassurance.
MC3 with DRA seems to be significantly better than MC3 without DRA. The mean values of
the number of iterations needed for the MC3 without DRA and for MC3 with DRA to reach
the most probable model 14652873 are approximately 246 and 194 iterations, respectively, and
their corresponding standard deviations are approximately 105 and 104. Bearing in mind that
multimodalities in model space are a very frequent phenomenon, MC3 with DRA is useful as it
increases the probability of moving between local modes of the posterior density.

5.2. Inference for a given model

Having been able to find the ‘best’ ordering we present the estimates for the parameters of
matrix W and the corresponding standard errors in Table 3. These standard errors (in brackets)
are given by the square root of the diagonal elements of the inverse of the expected information
matrix. The robust estimates of the covariance matrix (5) are also calculated and the standard
errors are presented in Table 3 (in square brackets). We also estimate the parameters of the
multivariate model for the ‘best’ ordering using Bayesian analysis and MCMC methods. We
transform the positive parameters to ‘near normality’ using the logarithmic transformation. These
transformations improve the behaviour of our MCMC algorithm. For our illustration we choose
non-informative (constant) priors for all the parameters. The blocking sampling scheme was
used in order to update the model parameters. We ran the algorithm for 260 000 iterations,
and we kept one value every 100 iterations (to save computer space). The resulting samples
of 2600 values were checked for convergence using the subsampling diagnostic proposed by
Giakoumatoset al.(1999). The method is based on the use of subsampling for the construction of
confidence regions for thet-quantile(t = 0.90) of the unique invariant distribution of the Markov
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Table 3.Estimates for the parameters of the full-factor multivariate GARCH model (1). Classical: estimates
using Fisher scoring, figures in brackets are standard deviations taken using Fisher scoring, figures in square
brackets are standard deviations taken using formula (5); Bayesian: posterior means and posterior standard
deviations (in brackets).

Classical Bayesian Classical Bayesian

w21 0.30 (0.02) [0.02] 0.30 (0.02) w65 0.10 (0.02) [0.02] 0.10 (0.02)

w31 0.25 (0.02) [0.03] 0.25 (0.02) w71 0.19 (0.02) [0.02] 0.19 (0.02)

w32 0.42 (0.02) [0.02] 0.42 (0.02) w72 0.33 (0.02) [0.02] 0.33 (0.02)

w41 0.27 (0.02) [0.03] 0.27 (0.02) w73 0.22 (0.02) [0.02] 0.22 (0.02)

w42 0.40 (0.02) [0.03] 0.41 (0.02) w74 0.09 (0.02) [0.02] 0.09 (0.02)

w43 0.14 (0.02) [0.02] 0.14 (0.02) w75 0.05 (0.02) [0.02] 0.05 (0.02)

w51 0.27 (0.02) [0.03] 0.27 (0.02) w76 0.08 (0.02) [0.02] 0.08 (0.02)

w52 0.47 (0.03) [0.03] 0.48 (0.03) w81 0.36 (0.03) [0.04] 0.36 (0.03)

w53 0.20 (0.03) [0.03] 0.21 (0.03) w82 0.57 (0.03) [0.03] 0.57 (0.03)

w54 0.35 (0.02) [0.02] 0.35 (0.02) w83 0.30 (0.03) [0.03] 0.30 (0.03)

w61 0.30 (0.02) [0.03] 0.30 (0.02) w84 0.42 (0.02) [0.04] 0.42 (0.03)

w62 0.50 (0.02) [0.03] 0.50 (0.03) w85 0.21 (0.02) [0.02] 0.21 (0.02)

w63 0.21 (0.02) [0.03] 0.21 (0.02) w86 0.07 (0.02) [0.03] 0.07 (0.02)

w64 0.15 (0.02) [0.02] 0.15 (0.02) w87 0.07 (0.03) [0.03] 0.07 (0.03)

chain. We construct the(1 − a)100% confidence regions for the 0.90 quantile(a = 0.05) based
on different (increasing) valuesN j = j N/100, j = 1, 2, . . . , 100, andN = 2600 iterations.
As before we estimate the ‘burn-in’ to beN∗ if the ‘range’ of the confidence regions versus
1/

√
N j is approximately linear forN > N∗, and linearity is checked by using the coefficient

of determination of the weighted linear regression between the dependent-variable ‘range’ and
1/

√
N j , j = 1, 2, . . . , 100. The reason that the t-quantile (with a larget , say t = 0.90) is

considered, is based on the notion that stabilization of estimates of the invariant distribution of
the Markov chain (especially in the tails) is a reliable indicator of the target distribution having
been achieved. We stop the MCMC simulation when the range of this(1 − a)100% confidence
region for the mean is appropriately small. Using the MCMC chains ofN = 2600 iterations and
choosing as threshold valued = 0.999 for the coefficient of determination in the subsampling
convergence diagnostic, we estimate the burn-in period. This turns out to be 780 iterations (see
Figure 2(b)). The accuracy, that is the range of the 95% confidence region for the mean, is 0.013.
The convergence of the parameters was also checked by using the tests proposed by Heidelberger
and Welch (1983) and Raftery and Lewis (1992). The first diagnostic indicates that convergence
has been achieved after a burn-in period of 780 iterations, whereas the latter diagnostic gives
values for the dependent factor around one. Estimated posterior means and standard deviations
for the parameters of matrixW of the latent GARCH model (1) are given in Table 3. Note that,
all of the parameters of matrixW are significant.
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5.3. Model uncertainty and prediction

In multivariate financial models, prediction of the future covariance matrix is of particular
interest. Having been able to calculate the posterior model probabilities, it seems natural to
account for model uncertainty in our predictive inferences. Suppose that we are interested in
HT+1, the predictive covariance matrix at timeT + 1. Then, its posterior distribution given
datay is given by

π(HT+1 | y) =

K∑
i =1

π(HT+1 | mi , y)π(mi | y), (15)

which is an average of the posterior predictive distributions under each model weighted by their
posterior model probabilities. Computation of (15) is straightforward after the implementation of
MC3 or of DRA. First, given a modelmi , a posterior sample ofπ(HT+1|mi , y) is obtained just
by calculating, for each sampled point inθ , the covariance matricesH1, H2, . . . , HT+1. Then
(15) suggests that in order to obtain a sample ofπ(HT+1 | y), each sampled point under model
mi should be taken with probabilityπ(mi | y). Thus, the derived sample ofπ(HT+1 | y) is
obtained by weighting all samples ofπ(HT+1 | mi , y) by the correspondingπ(mi | y).

We made inference about the predictive covariance matrix at timeT + 1 using the ‘best’
ordering, Bayesian model averaging based on the four most probable models and Bayesian model
average based on all possible models using equations (9) and (10). We ran the algorithms for
50 000 iterations, discarded the first 10 000 iterations as burn-in, and for the remaining 40 000
iterations kept one value in every 10 iterations, obtaining a sample of 4000 iterations. A posterior
sample ofπ(HT+1 | m, y) is obtained using the ‘best’ model by calculating, for each one of
the 4000 sampled points inθ , the covariance matrixHT+1. Then, we calculated the predictive
density of HT+1 based on the four most probable models. To achieve this, we constructed
the predictive densitiesπ(HT+1 | mi , y), i = 1, . . . , 4, under each model, for each one of
the 4000 sampled points inθ , and then we weighted all samples ofπ(HT+1 | mi , y) by the
corresponding normalized posterior model probabilities. Finally, we calculated the predictive
covariance matrix using Bayesian model averaging over all models that were visited during
50 000 iterations of MC3 algorithm. For each one of these models we estimated their parameters,
evaluated the predictive covariance matrixHT+1 based on the maximum likelihood estimates,
and then weighted these values using the posterior model probabilitiesπ(mi | y). We present in
Figure 3 the posterior predictive density of the one step-ahead forecast for the volatility of the
third stock, based on the four most probable models and on the Bayesian model average of the
four most probable models.

6. DISCUSSION

In this study, we propose a new multivariate GARCH model where the covariance matrix is
always positive definite and the number of parameters is relatively small with respect to other
multivariate models. The model can be thought as a factor model with full-factor representation
and zero idiosyncratic variances.

The estimation of the parameters of the multivariate model is done by using both classical
and Bayesian techniques. Maximum likelihood estimation is implemented by using the method
of Fisher scoring, while the MCMC algorithm is based on a blocking sampling scheme which
accelerates convergence of the model parameters. Due to the fact that the covariance matrix is
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Figure 3. Posterior predictive density of the one step-ahead forecast for the volatility of the third stock,
based on the four most probable models and on the Bayesian model average of the four most probable
models.

guaranteed to be positive definite, and that estimation of the parameters is easily implemented,
we believe that the model can be applied very easily to high dimensional problems.

We address the problem of model selection among different models (orderings) of the
analysed time series. We apply a MCMC model composition (MC3) method with and without
a second delayed rejection stage. This improves the Metropolis–Hastings algorithm in the sense
that the resulting estimates have smaller asymptotic variance (smaller accuracy) on a sweep
by sweep basis. We believe that this algorithm is very flexible and useful as it increases the
probability of moving between local modes of the posterior density.

We also consider the problem of accounting for model uncertainty in the proposed multi-
variate GARCH model. Conditioning on a single selected model ignores model uncertainty. We
make inferences about quantities of interest such as prediction of future variances and covari-
ances using the ‘best’ model, Bayesian model averaging over a set or over all possible models.
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