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1 Introduction

Long-memory models have become increasingly popular as a tool to describe eco-
nomic time series, ever since Mandelbrot suggested to use such models. There
is a large literature, much of it focussing on non- and semi-parametric meth-
ods. The emphasis here is on modelling and forecasting using methods based
on maximum likelihood and regression for the Gaussian fractionally integrated
arma model (arfima). This allows flexible modelling of the long-run behaviour
of the series, and often provides a good description for forecasting.

Useful entry points to the literature are the surveys by Robinson (1994) and
Baillie (1996), who consider the developments in the econometric modelling of
long memory, and Beran (1992), who reviews long-memory modelling in other
areas. The monograph of Beran (1994) discusses most of the central issues,
including forecasting.

The Gaussian arfima(p, d, q) model, introduced more carefully in the next
section, is specified by the orders of the autoregressive and the moving-average
parts of the model, p, and q, as well as the order of differencing, i + d. The
empirical modelling process consists of three stages: identification, estimation
and testing. This may be followed by forecasting.

The first stage determines the integer part i, together with p and q. Our
starting point for the second stage is exact maximum likelihood estimation
(EML, see §2.1). In contrast to standard arma models, the fractional parameter
d is estimated, jointly with the ar, ma and regression coefficients. The simple
EML estimator of d can be severely biased in the presence of unknown nuisance
parameters for regressor variables, even if there is only a constant to measure
the unknown mean. Therefore, we also consider the modified profile likelihood
method (MPL, §2.2), which incorporates a bias correction. Finally, we estimate
by nonlinear least squares (NLS, §2.3), which is easier to implement, and does
not require imposition of stationarity.

At the third stage we use diagnostic checks in the form of tests for normality,
ARCH effects and neglected serial correlation in the form of the Portmanteau
statistic. Specification tests are considered, but, for Wald type, do depend on
reliable standard errors. The arfima model enables interesting and easy-to-use
tests for the null of short-memory stationarity (d = 0), as well as for the null
of unit-root nonstationarity (d = 1). These tests complement more widely used
KPSS and Dickey–Fuller type tests.

Analogous to the distinction between NLS and EML, there are two ways
to compute the forecasts, differing in the treatment of pre-sample values. The
optimal methods we employ are explicitly based on finite sample information
sets; we also use ‘naive’ methods which ignore this issue.

The aims we have are as follows:

• illustrate the feasibility of EML and MPL estimation for arfima models;

• investigate whether the three estimation methods, EML, MPL and NLS,
give empirically similar results;
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• compare the optimal and naive methods for forecasting.

These issues are studied with reference to consumer price inflation for the US
and UK. Inflation series display long non-periodic cycles typical of long-memory
time series. This leads to significantly positive estimates of the order of inte-
gration which determines the rate of growth of out-of-sample forecast intervals
of the log of the corresponding price level. So, d is often the primary parameter
of interest and of crucial importance for studies of long-run variation of e.g.
indexed outlays.

The organization of this paper is as follows. The next section introduces
the arfima model, and the estimators that are studied. Section §3 estimates a
model for quarterly UK inflation, and presents forecasts of the log-price level.
The next section then studies this model through a Monte Carlo analysis. Sec-
tion §5 estimates a model for monthly inflation for the US, which is followed
by a parametric bootstrap analysis. Finally, in §6 we consider the impact of
neglected garch-structure for the error term.

2 Estimation and forecasting for the arfima model

The arfima(p, d, q) model for yt is written as

Φ (L) (1 − L)
d
(yt − µt) = Θ (L) εt, t = 1, . . . , T. (2.1)

where Φ (L) = (1 − φ1L − . . . − φpL
p) is the autoregressive polynomial and

Θ (L) = (1 + θ1L + . . . + θqL
q) is the moving average polynomial in the lag

operator L; p and q are integers, d is real. (1 − L)d is the fractional difference
operator defined by the following binomial expansion:

(1 − L)d =

∞∑

j=0

δjL
j =

∞∑

j=0

(
d
j

)
(−L)j.

We assume εt ∼ NID(0, σ2
ε), and write µt for the mean of yt. The arma-part

of the model is assumed invertible and stationary. In addition, Θ(z) = 0 and
Φ(z) = 0 do not have common roots. In that case zt = yt − µt is integrated of
order d, denoted I(d).

The properties of zt depend crucially on the value of d:
it is covariance stationary if d < 0.5, with long memory if d > 0 (see Hosking

(1981)). When 0 < d < 0.5 the autocovariance function exhibits hyperbolic
decay: γk ∼ ck2d−1 for k → ∞, where c denotes a finite nonzero constant.
The spectral density fz(ω) near zero is also hyperbolic: limω→0 fz(ω)ω2d exists
and is finite. For −0.5 < d < 0 the process is called intermediate memory or
‘overdifferenced’. In that case the inverse autocorrelations decay hyperbolically.

Odaki (1993) used the following condition for invertibility of zt: conver-
gence of the mean squared error of the ar(∞)-based one-step-ahead prediction,
MSE(ẑt|T ), to the innovation variance σ2

ε as T → ∞. The ar(∞) representation
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of zt is defined as

zt =

∞∑

j=1

πjzt−j + εt. (2.2)

In obvious notation: Π(L) =
∑∞

j=0
πjL

j = Θ(L)
−1

Φ(L)(1 − L)d and π0 = 1.
Note that there is an ar unit root for d > 0. When pre-sample values, i.e. zj

for j < 0, are set to zero in forecasting, we call the corresponding predictions
‘naive’ forecasts. These predictions are optimal if the observations are known
into the infinite past. The corresponding one-step-ahead forecast errors are
labelled naive residuals, denoted by ẽt. Forecasting is discussed in more detail
in §2.5. The coefficients of (1 − L)d, δj , are easily computed: δ0 = 1 and

δj =
∏

0<k≤j

k − 1 − d

k
, j = 1, 2, . . .

The ma representation of zt:

zt = 1 +

∞∑

j=1

ψjεt = Ψ(L)εt = Φ(L)−1(1 − L)−dΘ(L)εt, (2.3)

has an ma-unit root when −1 < d ≤ −0.5. Note that ψj → 0, when j → ∞ for
d < 1. The process is therefore mean-reverting in this case, and innovations εt

only have a transitory effect on the time-series process. In fact: ψk ∼ ckd−1 for
−0.5 < d < 1.

The remainder of this section reviews EML, MPL and NLS estimation.
These are all implemented in the arfima-package of Doornik and Ooms (1999),
which is a class of procedures in the programming language Ox, see Doornik
(2001). The package also implements the forecasting methods discussed below.

2.1 Exact maximum likelihood (EML)

Based on the normality assumption and with a procedure to compute the au-
tocovariances in the T × T covariance matrix Σ = σ2

εR of a T × 1 vector of
observations y, the log-likelihood for the arfima(p, d, q) model (2.1) with k
regressors is

logL
(
d, φ, θ, β, σ2

ε

)
= −

T

2
log (2π) −

T

2
log σ2

ε −
1

2
log |R| −

1

2σ2
ε

z′R−1z, (2.4)

where z = y − Xβ. When σ2
ε and β are concentrated out, the resulting normal

profile likelihood function becomes:

logLP (d, φ, θ) = c−
1

2
log |R| −

T

2
log ẑ′R−1ẑ, (2.5)

where ẑ = y − Xβ̂ and

β̂ = (X′R−1X)−1X′R−1y. (2.6)
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The core of the EML method is the computation of the autocovariances
as a function of the parameters of a stationary arfima model. Hosking (1981)
presents an effective method to compute the ACF for an arfima(1, d, 1) process.
This is extended by Sowell (1987) to the general case, using recursive evaluation
of the hypergeometric functions that are involved. Doornik and Ooms (2003)
give a small improvement to this method which enhances numerical stability.
They also show that the computational cost of Sowell’s method for the ACF
is negligeable compared to the likelihood evaluation (2.5), which contains the
inverse and determinant of a T × T covariance matrix. Doornik and Ooms
(2003) show how estimation can be achieved efficiently using storage of order
T , and computational effort of order T 2. As a consequence EML is sufficiently
fast to be used in samples of up to several thousand observations and bootstrap
methods.

2.2 Modified profile likelihood (MPL)

A good estimate of d is required for estimating the variance of the sample mean,
especially for inference about the mean of yt, and for forecasting. In most cases,
the unknown mean µt is a function of nuisance parameters, whose presence
has an adverse effect on the finite sample behaviour of the standard maximum
likelihood estimator of d. When µt is estimated, either by simple regression,
or jointly with d by maximizing the profile likelihood, d̂ can be severely biased,
even in the simplest arfima(0, d, 0) model. Smith Jr et al. (1997) suggest to
overdifference the data to remove the constant term, and then directly estimate
d − 1 essentially without bias. Our results show that this procedure is also
effective when there are additional regressors.

The modified profile likelihood is a concept from higher order asymptotic
theory, see Cox and Reid (1987). The aim is to develop more accurate infer-
ence on parameters of interest in the presence of (a large number) of nuisance
parameters, see (Barndorff-Nielsen and Cox, 1994, Ch. 4) for a motivation and
examples. An and Bloomfield (1993) derive the modified profile likelihood,
logLM , for the regression model with stationary arfima-errors:

logLM (d, φ, θ) = c+

(
1

T
−

1

2

)
log |R|−

1

2
log

∣∣X′R−1X
∣∣−

(
T − k − 2

2

)
log ẑ′R−1ẑ.

(2.7)
They show that the expectation of the score of (2.7) for (d, φ, θ) at the true
parameter values is O(T−1), whereas this expectation is O(1) for the score of
(2.5). This higher order bias correction provides the main argument for the
better behaviour of the MPL estimator over the EML estimator. The EML
and MPL estimators require Σ and its inverse to exist, and therefore require
d < 0.5.1 The assumption of normality plays an important role in the derivation
of the optimality of both estimators.

1The restriction −1 < d <= 0.49999 is imposed in EML and MPL estimation, together
with roots of the ar polynomial between −0.9999 and 0.9999.
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The Monte Carlo experiments of An and Bloomfield (1993), and the results
in Hauser (1999), show that, for simple arfima(1, d, 1) models, MPL reduces

bias for d̂, and that it leads to more accurate inference in finite samples. Hauser
(1999) uses the OLS-estimate of β in the MPL estimator in order to reduce the
number of computations; we use the appropriate GLS estimator (2.6).

2.3 Nonlinear least squares (NLS)

Beran (1995) develops an approximate maximum likelihood estimator based
on minimizing the sum of squared naive residuals, which is also applicable for
nonstationary arfima-processes with d > 0.5. The approximate log likelihood
is:

logLA (d, φ, θ, β) = c−
1

2
log

1

T − k

T∑

t=2

ẽ2t , (2.8)

where ẽt are the one-step-prediction errors from the naive predictions defined
near (2.2). Beran proves asymptotic efficiency and normality of the resulting
estimators for (d, φ, θ). Beveridge and Oickle (1993) and Chung and Baillie
(1993) present Monte Carlo evidence which suggest it to be a good estimator
for arfima(0,d,0) models with unknown mean. Chung and Baillie (1993) called
this estimator the conditional sum-of-squares estimator. We call it the nonlinear
least-squares estimator.

2.4 Inference

The asymptotic efficiency and normality of the maximum likelihood estimators
for (d, φ, θ) and β have been established by Dahlhaus (1989) and Dahlhaus
(1995).

For all estimation methods, we use the numerical Hessian as the basis for
the estimated covariance matrix of the parameters. The covariance matrix of β̂
is of the familiar GLS type:

varβ̂ = σ̂2
ε(X′R−1X)−1.

To our knowledge, an MPL estimator for σ̂2
ε , has not been derived, except

for special cases such as the standard linear model without dynamics, where
it equals the familiar unbiased OLS-estimator: σ̂2

ε = (T − k)−1e′e, see e.g.
(Barndorff-Nielsen and Cox, 1994, example 4.9). For “MPL-inference” on β we
employ this OLS-formula for σ̂2

ε .2

2.5 Forecasting

The residuals et of EML and ẽt of NLS estimation are the results of two different
methods of prediction: best linear unbiased prediction and ‘naive’ prediction,
which can also be applied out-of-sample.

2Kiviet and Phillips (1998) discuss developments in bias corrections of σ̂2
ε in ar-models

and suggest increasing the degrees-of-freedom correction with the number of estimated ar

parameters. The correction of Lieberman (2001) is one higher, owing to the estimation of d.
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The best linear prediction of zT+H , given the information in z and knowing
the parameters of the arfima process, is given by

ẑT+H|T = (γT−1+H · · · γH) (ΣT )−1z = q′
Hz (2.9)

see e.g. (Beran, 1994, §8.7) or (Brockwell and Davis, 1993, §5.1). Again, this
can be viewed as a regression of zT+H on z, and (Σ)−1

T z can be computed
efficiently using a Durbin–Levinson type algorithm. Let QH|T z denote the op-
timal forecast for ẑH|T = (ẑT+1|T · · · ẑT+H|T )′, then var(ẑH|T − zH) = ΩH|T =
ΣH − QH|T ΣTQ′

H|T . The diagonal elements give the mean squared errors of
the optimal j-step ahead forecasts j = 1, . . . , H. It is often of interest to fore-
cast partial sums of zt, e.g. when log price-level predictions are constructed as
partial sums of inflation forecasts. The variance matrix of cumulative predic-
tion errors is then easily computed as CΩH|T C′ where C is a lower triangular
matrix of only ones.

The naive method recursively predicts z̃T+1, z̃T+2, . . . using ar-representation
(2.2) up to order T, T + 1, . . .. In that case, pre-sample values are set to zero,
and the predictions are optimal if the observations are known into the infinite
past. Corresponding variances of z̃T+H are computed using the ma-coefficients
of (2.3):

var(z̃T+H) = σ2
ε



1 +

H−1∑

j=1

ψ2
j



 . (2.10)

Again, z̃T+H|T converges to ẑT+H|T as T → ∞.

2.6 Monte Carlo simulation and bootstrap inference

All that is required for simulation, in addition to efficient implementations of
estimators and tests, are exact drawings from the DGP of an arfima process.
Let PP′ be a Choleski factorization of Σ then drawings y are conveniently
generated as y = Pε+ Xβ where ε is a vector of independent standard normal
drawings. For large samples sizes, storage of the triangular matrix P may be
problematic. In that case, an inverse version of Durbin’s algorithm can be
applied, see Doornik and Ooms (2003).

Monte Carlo experiments are used to compare the estimates from the three
estimators when applied to the same data generation process, based on findings
from the UK model. The parametric bootstrap, which in our implementation
amounts to a Monte Carlo experiment where the parameters are given by the
empirical model, is used to assess the US results. Unlike a Monte Carlo exper-
iment, each model is simulated at its empirical estimates, instead of using the
same set of DGP values. This will enable us to explore the impact on inference
and forecasting of the different baseline results.

Bootstrap samples can also be used for parametric bootstrap tests: the time
series is resampled using the estimates of parameters under a null hypothesis of
interest. Compute the test statistics for the observed sample, as well as for each
bootstrap sample. If the estimated bootstrap p-value, i.e. the proportion of

6 Studies in Nonlinear Dynamics & Econometrics Vol. 8 [2004], No. 2, Article 14

http://www.bepress.com/snde/vol8/iss2/art14



simulated test statistics that exceeds the observed test statistic, is smaller than
our significance level, the null hypothesis is rejected. In many circumstances one
may expect bootstrap inference to be more accurate than standard asymptotic
inference, see Davidson and MacKinnon (1999b).

3 Modelling Inflation in the UK

The UK series is the quarterly ‘all items retail price index’3 for the period
1959.1–2002.2. We construct the corresponding inflation series by defining
pt = ∆ logPt, and multiplying by 400 to obtain annual percentages. The series
exhibits long memory and clear seasonality, see Figure 1a.

1960 1965 1970 1975 1980 1985 1990 1995 2000

0

10

20

30
UK inflation 

0 10 20 30 40

0

1
SACF 

0.0 0.5 1.0

1

2
SDF 

Figure 1: UK quarterly inflation rates, with sample autocorrelation function and
spectral density.

The time-series plot shows slow mean reversion of inflation. There are two
pronounced peaks in inflation in the 1970s: in the second quarter of 1975, and
the third quarter of 1979. These could be traced back to the impact of the
first and second oil-price shocks and VAT adjustments, and will require dummy
variables in our model. The 1975 peak was a culmination of oil-price shocks and
domestic factors (see the discussion in Hendry (2001) who builds a structural
model for UK inflation, extending over more than a century.) Early 1979 was the
so-called ‘winter of discontent’, followed by the election of Margaret Thatcher
in May. The first budget in June introduced a switch from direct to indirect
taxation, with a sharp increase in VAT. A few weeks later this was followed by
the second oil price shock. These effects caused a sharp increase in measured
inflation. We capture both effect in one variable called VAT, which is unity for
1975.2 and 1979.3.

Figure 1b contains the corresponding sample autocorrelation function (SACF)
γ̂k/γ̂0, for lags of 1 up to 40 quarters. The decay in the SACF is very slow, in-
dicating a d close to, or inside the nonstationary region [0.5,∞). There is also

3This is the headline RPI, with 1987=100. It is available as the series CHAW from the
UK Office of National Statistics, www.statistics.gov.uk. Prior to 1987, the RPI is extended
backward using the series CZBH.
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clear evidence of the seasonality in the SACF. Some experimentation leads us
to a very simple form to capture the seasonality: the up-swing in the second
quarter is off-set in the third quarter, so we use the variable Q2 −Q3. The non-
parametric estimate of the spectral density function (SDF) in Figure 1c shows
a clear peak near frequency zero.

3.1 Inference

An adequate, yet parsimonious, approximation to the second-order characteris-
tics for UK inflation is given by the following arfima model with zero-frequency
long-memory and short-memory seasonality:

(1 − φpL
p)(1 − L)d(yt − x′tβ) = (1 + θqL

q)εt,

where p = q = 4 for the quarterly UK data, and xt consists of a constant and
dummy variables (VAT and Q2 − Q3). Table 1 presents estimation results for
the three methods EML, MPL and NLS.

The UK estimates for d vary from 0.47 to 0.59. The results in Table 1
illustrate an important practical problem of estimating a d near 0.5: EML
delivers an estimate smaller than 0.5, whereas MPL did not converge. Therefore
we re-estimate after differencing the data, based on (1−L)d = (1−L)d−1(1−L):

(1 − φ4L
4)(1 − L)d∆(∆yt − ∆x′tβ) = (1 + θ4L

4)εt, (3.1)

using ∆VAT and ∆(Q2 − Q3) in the mean. The tabulated value is the MPL

estimate of d which is 1+ d̂∆. As a consequence of differencing we can no longer
identify a value for the mean of inflation: the constant drops out of the regressor
set. Note that MPL and EML differ only if there are regressors in the model, so
except for the small effect of the dummy variables, the MPL results can also be
viewed as EML estimates obtained by modelling the first differences. NLS does
not require such first differencing to restrict d < 0.5. There is, however, a change
in the interpretation of the constant term. For −0.5 < d < 0.5 the constant term
represents the mean of inflation, but for 0.5 < d < 1 it should be interpreted
as the mean growth rate. The constant is of course unidentified (cannot be
estimated) if d = 1. In the UK case the mean growth estimate is apparently
not well identified in the data. The UK inflation seems nonstationary, but one
cannot easily reject d = 0.5 for the UK data.

The last four lines of Table 1 report test residual diagnostics for the model,
as reported by PcGive (Hendry and Doornik (2001)), and applied to the EML
and MPL residuals et and to the naive NLS residuals ẽt. The normality test is
that of Doornik and Hansen (1994), Portmanteau is the Ljung and Box (1978)
statistic with the used lag length in parentheses, ARCH(4) is the LM test for
fourth order ARCH effects, Engle (1982). P-values of the statistics are reported
between square brackets. There is no clear evidence against the white noise
assumption but some arch effects are detected. This corresponds to the higher
volatility during the period of high inflation. The results for the EML-et, MPL-
et and ẽt are qualitatively similar.
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Table 1: Estimation results for UK inflation, 1959.1–2002.2 (T = 174)

EML MPL NLS
dependent variable 400pt 400∆pt 400pt

d̂ 0.473 (0.032) 0.563 (0.069) 0.590 (0.076)

φ̂4 0.872 (0.079) 0.918 (0.063) 0.612 (0.18)

θ̂4 −0.695 (0.12) −0.742 (0.095) −0.434 (0.20)
Constant 3.60 (15) — 1.80 (9.7)
VAT 15.6 (1.7) 15.2 (1.7) 15.0 (1.6)
Q2 −Q3 2.58 (0.51) 2.45 (0.61) 3.00 (0.33)
σ̂ 2.836 2.856 2.745
Normality 2.02 [0.36] 3.43 [0.18] 2.92 [0.23]
Portmanteau(13) 12.1 [0.28] 10.4 [0.41] 10.3 [0.41]
Portmanteau(25) 26.6 [0.23] 23.8 [0.36] 28.4 [0.16]
ARCH(4) 4.21 [0.003] 4.92 [0.001] 4.01 [0.004]

3.2 Forecasting

An important goal of long-memory time-series modelling is to perform inference
on long-range forecasts. How do the differences in estimates of d and β trans-
late into the location and width of forecast intervals for inflation and the log
price level? We present the main picture in Figure 2 for the UK, which displays
forecast intervals up to a horizon of 8 years together with nominal 95% con-
fidence intervals. The dependent variable was ‘seasonally adjusted’, by taking
pt − 2.5(Q2−Q3)/400, using actual growth rates instead of annual percentages.
The estimation sample was reduced by one observation to 2002.1 to avoid the
seasonal effect in the end-of sample observation when re-integrating.

The different panels clearly show how the rate of growth of the forecast
interval depends on d̂. The effective orders of integration are about 0.47, -0.44
and 0.59 for the top graphs and 1.47, 1.56 and 1.59 for the bottom graphs.

The EML estimate of 0.47 indicates stationarity for the level of UK inflation.
With a d so close to 0.5 we observe that the forecast and its variance converge
only very slowly to the unconditional mean and variance. The (short-memory)
deviations in the stationary seasonal pattern are apparently predictable. This
shows most clearly in the forecasts for the changes in inflation (d = −0.44)
which form the basis of the MPL projections. Here the forecasts converge much
faster to the unconditional (zero) mean and variance of the process.

The NLS forecasts for inflation are based on d = 0.59, which is clearly above
0.5. The regression constant in the model now determines a (downward) trend
inflation. The variance of the H-step ahead forecasts grows proportionally to
H2d−1 for nonstationary d > 0.5, assuming H/T → 0, see (Beran, 1994, §8.6).
Therefore, the width of the NLS forecast interval for inflation is proportional to
the corresponding square root: cH0.59−0.5.
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Figure 2: Forecasts of (∆) inflation levels and log price levels with 95% confidence
bands for the EML, MPL and NLS estimates for the UK model. Optimal forecasts for
EML and MPL, naive forecasts for NLS.

The different forecasts for the log price level are displayed in the bottom
graphs of Figure 2. All these forecasts show clearly that the UK price level is
not mean reverting: d � 1. The EML price level forecast is linearly trending
and the width of the forecast interval is proportional to H0.97. Therefore, the
interval grows (nearly) at a linear rate as well. The forecast interval is eventually
bounded from below, although this does not seem important for relevant forecast
horizons. The MPL price-level forecasts are also linearly trending, since we have
integrated the zero mean ∆inflation series twice. The slope resembles the slope
in the EML forecasts. The forecast interval grows proportionally to H1.06.
The NLS forecast approaches a quadratic trend and the growth of the forecast
interval reflects the covariance nonstationarity most clearly.

Table 2: Forecast results for UK log-price level 1 to 32 quarters ahead

EML MPL NLS
optimal: ẑT+H optimal: ẑT+H naive: z̃T+H naive: z̃T+H

H Date forecasts rmse forec. rmse forec. rmse forec. rmse

1 2002.2 5.1637 (0.0071) 5.1636 (0.0071) 5.1637 (0.0071) 5.1622 (0.0069)
2 2002.3 5.1691 (0.0127) 5.1688 (0.0133) 5.1690 (0.0133) 5.1663 (0.0129)
4 2003.1 5.1741 (0.0236) 5.1726 (0.0260) 5.1731 (0.0259) 5.1714 (0.0255)

12 2005.1 5.2104 (0.0764) 5.2031 (0.0915) 5.2060 (0.0911) 5.2059 (0.0912)
24 2008.1 5.2718 (0.174) 5.2515 (0.221) 5.2613 (0.220) 5.2713 (0.210)
32 2010.1 5.3167 (0.249) 5.2857 (0.325) 5.3021 (0.322) 5.3209 (0.296)

Sample: 1959(1) - 2002(1). See Table 1 for model and parameter estimates.
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Table 2 provides numerical evidence corresponding to Figure 2; it also con-
trasts the optimal and naive forecasts. The former involve formulae for projec-
tion into the finite past. The weight of past observations declines only slowly
in long-memory models and one can expect a substantial difference with naive
forecasts which use projection as if the infinite past is known. However, Table 2
shows that the differences are not that big. The results for MPL required us to
integrate the forecasts for ∆inflation twice. Evenso, the log price-level forecasts
8-years ahead differ only by .016, with estimated standard error of 0.325 and
0.322. In sum, we see that the choice of estimator matters much more than
the choice of predictor. Naturally, the difference between optimal and naive
forecasts becomes more pronounced as the sample size decreases.

4 Monte Carlo analysis

It was already noted that the estimate of d close to 0.5 is downward biased for
EML. Because the results of the previous section suggest that d is close, and
perhaps larger than 0.5, we investigate this using a Monte Carlo experiment.
The DGP is chosen to resemble the UK estimates, selecting d0 = 0.45 initially:

(1 − 0.9L4)(1 −L)d0 [yt − 3.5 − 15VAT− 2.5(Q2 −Q3)] = (1− 0.7L4)εt, (4.1)

with εt ∼ N(0, 8) and t = 1, . . . , 174. The Monte Carlo uses M = 10 000 repli-
cations.
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Figure 3: Estimates for d̂ (top panel) and φ̂4, θφ4 (bottom panel) for DGP (4.1),
M = 10, 000.

The solid line in the first panel of Figure 3 shows the distribution of the
EML estimates of d̂. The bias towards stationarity is clearly visible. Just one
experiment failed to converge, and all others had d̂ < 0.49999, so this bias is not
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an artefact of rejecting non-stationary experiments. The bottom panel gives the
distributions for the estimated arma parameters.

The dotted line in the first panel of Figure 3 shows the results for the MPL
estimates. Here we automatically switched to estimation in first differences
when there is a convergence failure with d > 0.49. This enables us to estimate a
non-stationary model, thus matching our modelling approach for UK inflation.
The cost is the loss of identification of the mean. The MPL estimates for d̂
are essentially unbiased, and approximately normally distributed. The NLS
estimates of d are quite close to those of MPL, but it has much more problems
identifying the short-run dynamics in the form of the arma parameters (this
difference with EML/MPL was also noticeable from the forecast plots, Fig. 2).

Table 3: Monte Carlo estimates for DGP (4.1) with d0 = 0.45, M = 10, 000

EML MPL NLS
bias RMSE bias RMSE bias RMSE

d̂ −0.045 0.07 −0.005 0.07 −0.011 0.08

φ̂4 −0.091 0.18 −0.038 0.14 −0.155 0.29

θ̂4 0.093 0.20 0.035 0.17 0.148 0.30
Constant −0.131 12.11 −1.160 10.49 −0.039 13.10
VAT 0.009 1.74 0.006 1.73 0.010 1.75
Q2 −Q3 −0.001 0.63 −0.001 0.63 0.002 4.45
σ̂2 −0.268 0.88 −0.165 0.87 −0.313 0.92

Table 3 confirms the graphical results. With a DGP that is close to non-
stationarity, MPL provides the best estimate of d. In addition, it has a lower
bias on the arma coefficients, with a lower root mean-square error (RMSE). The
estimate of the constant is more biased, because it was set to zero whenever the
model was using differenced data.4

The scatterplots in the first row of Figure 4 show that d is well identified: d̂ is

hardly correlated with φ̂4. This is an important check: empirical identification
is a necessary condition for the successful application of standard asymptotic
results in practice. The scatterplot of φ̂4 versus θ̂4 shows that both parameters
are not well identified individually. However, it is also clear that φ4 + θ4 = 0,
i.e. cancelling roots and no seasonal parameters, can be rejected. The line
φ4 + θ4 = 0 in the scatter plot indicates this. Note that our EML and MPL
implementations restrict φ4 to an interval [−1 + δ, 1 − δ], where we chose δ =
0.001; NLS does not impose this restriction.

The sum of the arma parameters, φ4 +θ4, can be interpreted as the impulse
response of the short-memory component of inflation after one year. This statis-
tic has a much better behaved distribution, see Figure 5, with EML and MPL

4We also run the MPL experiment without automatic differencing. In that case, 14 000
experiments are needed to successfully estimate 10 000 stationary models. Of course, this
selection causes a bias in d, which at −0.035 is still slightly lower than that of EML.
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Figure 4: Cross plots of Monte Carlo replications of three estimators for DGP (4.1)
with d0 = 0.45, M = 10, 000.
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Figure 5: Monte Carlo estimates of impulse responses for short-memory part of DGP
(4.1) with d0 = 0.45.
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very similar. The short-memory impulse response after 2 years, φ4(φ4 + θ4), is
also well behaved, although NLS is again much less reliable.
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Figure 6: EML estimates of first differences compared to MPL estimates, for DGP
(4.1) with d0 = 0.45.

Figure 6 shows that overdifferencing does indeed remove the bias for EML.
All EML estimates are now of the form (3.1), while MPL only differences if
required (which is in about 30% of estimates). Now both are very similar,
although the bias in the arma parameters of EML is still somewhat higher.
MPL has the advantage that, for d close to 0.5, it is possible to estimate all
mean parameters without introducing a bias in d. The overdifferenced EML
estimate of d for UK inflation (Table 1) is 0.57 which is compatible with the MPL
estimate. Indeed, when we rerun the Monte Carlo experiments with d0 = 0.55 in
the DGP (i.e. setting d0 = −0.45 and then integrating once), the EML estimates
are near 0.45, while the MPL estimates are again unbiased.

5 Modelling Inflation in the US

The US series is the monthly core inflation in the US, taken as the urban con-
sumer price index for all items except food and energy.5 The sample period is
1957.1–2003.4. The corresponding inflation series is 100∆ logPt to obtain an-
nual percentages. Like UK inflation, the US series exhibits long memory and
clear seasonality, see Figure 7. In addition, the effect of rounding in the data is
visible prior to 1975. There is a pronounced outlier in July 1980: we will treat
this sudden drop in the price level when the US was locked in high inflation as
a measurement error.

Our model specification follows Bos et al. (2002) in that we allow for a
separate mean of inflation in the period from 1973.7 to 1982.6, as well as a
shift in seasonality from 1984 onwards. Finally, we add one additional model-
based outlier correction for 1981.10. Table 4 reports the results, omitting the
22 coefficients for the centered seasonals.

The US estimates of d̂ are all close to 0.32, with a standard error of 0.03.
This puts it in the stationary region, but with clear evidence of long-memory.
The other coefficient estimates also show little difference between the EML and

5This series has 1982-84=100, and is available as the series CUUR0000SA0L1E from the
US Bureau of Labor Statistics, www.bls.gov.
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Figure 7: US monthly inflation rates, with sample autocorrelation function and spec-
tral density.

Table 4: Estimation results for US inflation, 1957.11–2003.4 (T = 546; centered
seasonal estimates omitted)

EML MPL NLS
dependent variable 100pt 100pt 100pt

d̂ 0.322 (0.032) 0.318 (0.034) 0.332 (0.032)

φ̂12 −0.156 (0.33) 0.348 (0.51) 0.641 (0.11)

θ̂12 0.273 (0.32) −0.184 (0.52) −0.633 (0.13)
Constant 0.250 (0.068) 0.249 (0.076) 0.317 (0.065)
73M7–82M6 0.404 (0.056) 0.405 (0.060) 0.387 (0.055)
D80M7 −1.19 (0.16) −1.20 (0.16) −1.11 (0.16)
D80M10 −0.543 (0.16) −0.539 (0.16) −0.484 (0.16)
σ̂ 0.167 0.172 0.167
Normality 2.42 [0.30] 3.65 [0.16] 5.23 [0.07]
Portmanteau(36) 40.8 [0.17] 44.1 [0.09] 45.9 [0.07]
Portmanteau(72) 76.0 [0.26] 77.8 [0.22] 89.9 [0.05]
ARCH(12) 6.18 [0.000] 6.27 [0.000] 5.10 [0.000]
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MPL estimates. NLS differs mainly in the estimates of the ARMA parameters,
and their standard errors. The test outcomes are also somewhat less satisfactory
(but all show very significant ARCH effects).

5.1 Bootstrap inference

We use a parametric bootstrap to check the reliability of the estimates. The
focus is on the ARMA parameters and intercept, where the main difference is
found. In each case, the null hypothesis is the respective model estimate (so
EML is simulated using a DGP based on the EML estimates of Table 4, MPL
using the MPL estimates, etc.). Only 100 replications are used to illustrate that
this can be a useful part of empirical modelling (except for NLS, this takes less
than 10 minutes on a 1.6 Mhz Pentium IV).
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Figure 8: Estimates of parametric bootstrap densities for φ̂12 and θ̂12 for the US
model of Table 4. See also Table 5.

Figure 8 shows the distribution for the ARMA coefficients of the three mod-
els. Even at 100 replications there is a clear difference: the EML estimates
are quite biased, while the MPL estimates appear well-behaved. NLS is prob-
lematic, because the model has essentially cancelling roots. Estimation takes
nearly ten times as long as for the other estimators (and there are 33 conver-
gence failures to get 100 converged models). The NLS estimates are centered
on zero, instead of the DGP values. It is quite surprising that with nearly 550
observations there is still such a large difference between the estimators.

For the other parameters in the model, EML, MPL and NLS all have a small
bias. However, inference on the intercept and intercept shift is more reliable for
MPL than both EML and NLS, see Table 5 (although the number of replications
is very small here).
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Table 5: Empirical rejection probabilities at 10% and 5% nominal level for
two-sided t-tests. US core inflation

EML MPL NLS
10% 5% 10% 5% 10% 5%

t− d̂ 0.05 0.01 0.03 0.01 0.17 0.10

t− φ̂12 0.36 0.33 0.18 0.11 0.71 0.63

t− θ̂12 0.38 0.33 0.19 0.15 0.62 0.48
t−Constant 0.18 0.10 0.09 0.05 0.25 0.19
t−D73M7-82M6 0.20 0.16 0.17 0.11 0.23 0.14
t−D80M7 0.12 0.06 0.11 0.04 0.09 0.03
t−D81M10 0.12 0.07 0.12 0.07 0.22 0.09
See Table 4 for the DGP. 100 replications.

5.2 Bootstrap forecasts

Extended bootstrap samples are used to check the reliability of our asymptotic
likelihood-based inference on the forecasts. Note that the derivations of forecast
intervals neglect the estimation uncertainty in the parameters and treat them
effectively as known. It is interesting to see whether this is appropriate in the
current context, where we re-estimate the model in each bootstrap sample.

We present the results for US inflation in Table 6. For each estimation
method, forecast method, and each horizon we present six numbers. The first
two are the actual forecast and its RMSE (as reported for the UK price level in
Table 2). The next four statistics are obtained from the bootstrap simulations.
The column labelled ‘mean’ reports the mean forecast error of the 100 replica-
tions, followed by MCSD, which reports the Monte Carlo standard deviation,
i.e. the standard deviation of the 100 forecast errors. The final two statistics de-
scribe the empirical distribution of the estimated RMSEs: their mean (labelled
‘RMSE mean’) and standard deviation (labelled ‘RMSE MCSD’) . For one-step
ahead forecasts these are mainly determined by the empirical distribution of σ̂ε.
For longer multi-step forecasts they are also influenced by d̂.

Overall the empirical MCSDs in column 6 compare well with the RMSE
that we estimated directly using the standard formulae for our actual sample
(column 4). Note that the EML-estimator of the RMSE is somewhat downward
biased in comparison to EML. The uncertainty in the estimated RMSE is quite
small, as shown in the final column Table 6.

We see again that the choice of estimator matters much more than the choice
of predictor. In this case the difference between optimal and naive forecasts is
negligeable.

6 Allowing for GARCH effects

The Gaussian homoskedastic arfima-model leads to convenient chi-squared in-
ference for d, and it also leads to normal forecast intervals. It gives an adequate
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Table 6: Actual forecasts, and parametric bootstrap forecast results for US
inflation up to 24 months ahead

H Date actual forecasts bootstrap forecast errors
forecast RMSE mean MCSD RMSE RMSE

mean MCSD
EML: optimal forecasts ẑT+H

1 2003.05 -0.041 0.167 -0.0110 0.169 0.162 0.0049
2 2003.06 -0.021 0.175 -0.0105 0.180 0.170 0.0053
3 2003.07 0.122 0.179 -0.0133 0.173 0.174 0.0057

12 2004.04 0.154 0.187 0.0128 0.190 0.181 0.0070
24 2005.04 0.187 0.193 0.0052 0.206 0.186 0.0082

EML: naive forecasts z̃T+H

1 2003.05 -0.041 0.167 -0.0103 0.169 0.162 0.0049
2 2003.06 -0.021 0.175 -0.0091 0.182 0.170 0.0053
3 2003.07 0.123 0.179 -0.0137 0.173 0.173 0.0057

12 2004.04 0.155 0.187 0.0130 0.187 0.181 0.0070
24 2005.04 0.188 0.193 0.0052 0.206 0.186 0.0083

MPL: optimal forecasts ẑT+H

1 2003.05 -0.051 0.172 -0.0093 0.176 0.172 0.0052
2 2003.06 -0.016 0.180 -0.0088 0.188 0.180 0.0057
3 2003.07 0.115 0.184 -0.0122 0.182 0.183 0.0061

12 2004.04 0.151 0.192 0.0139 0.190 0.191 0.0075
24 2005.04 0.174 0.200 0.0075 0.212 0.200 0.0093

MPL: naive forecasts z̃T+H

1 2003.05 -0.051 0.172 -0.0094 0.176 0.172 0.0052
2 2003.06 -0.016 0.180 -0.0088 0.188 0.180 0.0057
3 2003.07 0.116 0.184 -0.0123 0.182 0.183 0.0061

12 2004.04 0.151 0.192 0.0139 0.190 0.191 0.0075
24 2005.04 0.174 0.200 0.0074 0.212 0.200 0.0094

NLS: naive forecasts z̃T+H

1 2003.05 -0.030 0.167 -0.0290 0.172 0.165 0.00049
2 2003.06 0.003 0.176 -0.0222 0.176 0.174 0.00056
3 2003.07 0.138 0.180 -0.0260 0.167 0.177 0.00061

12 2004.04 0.188 0.189 0.0106 0.190 0.186 0.00078
24 2005.04 0.206 0.192 0.0316 0.196 0.188 0.00086
See Table 4 for the DGP; 100 replications.
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characterization of the second order properties of the data and it provides op-
timal linear forecasts. These inference and optimality properties may not be
robust. The diagnostics of both the US and UK models that we estimated re-
veal signs of conditional heteroskedasticity. This has been ignored up to this
point, and we need to consider how it impacts on the model. After all, arch

error models were first introduced by Engle (1982) to model the UK inflation
series for the 1970s.

To start, we estimate a Gaussian arfima-garch(1,1) model using the ap-
proximate NLS-type likelihood following Ling and Li (1997) and Baillie et al.
(1996). The estimation results are presented in Table 7, and should be com-
pared to the NLS estimates in Tables 1 and 4. Table 7 only reports the arfima

parameters and intercept, but the estimated models include the dummies and
seasonal variables as before. Standard errors are based on the second deriva-
tives of the log-likelihood, using zero for the cross-derivative between estimated
arfima (with regressors) and garch parameters.

Table 7: arfima-garch estimates for UK and US inflation

UK inflation US inflation

d̂ 0.555 (0.087) 0.283 (0.033)

φ̂12 0.659 (0.18) 0.521 (0.16)

θ̂12 −0.427 (0.20) −0.434 (0.18)
Constant −0.086 (10.9) 0.237 (0.046)
α̂0 0.418 (0.48) 0.000086 (0.0001)
α̂1 0.090 (0.067) 0.052 (0.0061)

β̂1 0.851 (0.10) 0.944 (0.016)
σ̂ 2.66 0.143

The garch parameters are clearly significant and indicate substantial per-
sistence in the volatility of inflation: α̂1 + β̂1 > 0.9 for both series, and is very
close to one for US inflation. For the UK, the addition of garch parameters has
not made much difference. For the US, however, d̂ has fallen by nearly two stan-
dard errors. This is somewhat in contrast to the results of Ling and Li (1997),
who showed that the information with regard to d and the arma parameters
on the one hand and the garch parameters on the other hand is asymptoti-
cally orthogonal, and could be the consequence of igarch errors. There is no
qualitative difference: for the US-series we still find d < 0.5, and for the UK we
have d > 0.5.

The parameter σ2 in Table 7 denotes the unconditional variance of the inno-
vations, or ‘average’ one-step-ahead forecast error variance, and is comparable
between the homoskedastic models and the model with garch innovations. It
is computed as σ2 = α0/(1 − α1 − β1).

Standard Wald tests are unlikely to work well for this sample size and model.
Therefore we consider a bootstrap test on the value of d. The hypothesis of in-
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terest is H0 : d = 0.5 in the arfima-garch model for UK inflation. The para-
metric bootstrap test procedure is based on the parameters estimated under H0.
Using these estimates, we generate B = 199 bootstrap samples, on which the
unrestricted model is estimated. Following Davidson and MacKinnon (1999a)
we use the H0-parameters as starting values for the iterative estimation in each
bootstrap sample, but instead we iterate until convergence. Consequently, we
have B t-values on d: P (|d̂b−0.5| < tb) = 0.05 for b = 1, . . . , B. The relative po-
sition of the t-value from the original model within these bootstrapped t-values
gives us the bootstrap p-value. For the UK we find a one-sided bootstrap p
value of 28%, which is actually close to the estimated value of 26%.

6.1 Effects of neglecting GARCH errors on inference

We extend the Monte Carlo experiment of §4 by adding (unmodelled) garch

errors:

(1 − 0.9L4)(1 − L)d0 [yt − 3.5 − 15VAT− 2.5(Q2 −Q3)] = (1 − 0.7L4)εt,
εt|Ft−1 ∼ N(0, ht),
ht = α0 + α1ε

2
t−1 + β1ht−1,

(6.1)
with t = 1, . . . , 174, and M = 10 000 replications. The garch-parameters are
set to α0 = 0.4, α1 = 0.2, β1 = 0.85, so that the unconditional variance is
8, which equals that used in (4.1). The results are reported in Table 8, and,
as expected from the block-diagonality of the information matrix, the arfima

estimates are not much affected by the presence of garch errors when compared
to Table 3. The largest difference is in σ2, which is more downward biased in
Table 8.

Table 8: Monte Carlo estimates for DGP (6.1) with d0 = 0.45, α0 = 0.4, α1 =
0.2, β1 = 0.85, M = 10, 000

EML MPL NLS
bias RMSE bias RMSE bias RMSE

d̂ −0.045 0.07 −0.003 0.07 −0.011 0.08

φ̂4 −0.113 0.21 −0.060 0.17 −0.107 0.24

θ̂4 0.114 0.24 0.055 0.20 0.094 0.26
Constant −0.085 4.74 −1.187 4.16 −0.016 5.33
VAT 0.013 1.72 0.009 1.72 0.008 1.73
Q2 −Q3 −0.001 0.55 −0.001 0.55 −0.058 4.05
σ̂2 −1.113 2.59 −1.019 2.58 −1.083 2.59
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7 Conclusions

We considered several practical issues when using arfima models to model and
forecast inflation. We compared three methods to estimate Gaussian arfima

models: exact maximum likelihood, modified profile likelihood, and nonlinear
least squares. We discussed computation of the exact and modified profile like-
lihood.

For models that are relevant for postwar monthly US core inflation and for
quarterly overall UK consumer price inflation, it was shown that MPL is clearly
the preferred method of inference. A Monte Carlo analysis, and a more limited
parametric bootstrap analysis revealed that it is both more reliable and more
efficient. Inference on the integration parameter d is especially satisfactory.
However, currently available (higher order) asymptotic approximations did not
lead to reliable inference on the (trending) mean of inflation.

We also compared optimal and naive forecasts. For the sample sizes at hand
the difference between the two forecasting methods turned out to be of little
importance. garch effects were found to be important empirically, but without
much effect on the estimation of the arfima parameters, except for d̂ in the US
inflation model, which was estimated to be (nearly) integrated garch.

Although some of the asymptotic results seem to give a good guidance for
finite sample inference in our model, we recommend the application of paramet-
ric bootstrap tests. Not only can bootstrap tests be expected to provide more
accurate inference, the bootstrap samples also deliver additional evidence on
the adequacy of parameterizations, estimators, and corresponding Wald tests
for the parameters and forecasts of arfima processes for inflation series.
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