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1 Introduction

The forecasting of economic time series is a challenging problem. We approach the forecasting

challenge from a model-based perspective and adopt the unobserved components time series

model. The key feature of this class of models is the decomposition of a time series into trend,

seasonal, cycle and irregular components. Each component is formulated as a stochastically

evolving process over time. The decomposition of an observed time series into unobserved

stochastic processes can provide a better understanding of the dynamic characteristics of the

series and the way these characteristics change over time. The trend component typically

represents the long-term developments of the time series of interest and is often specified as

a smooth function of time. The recurring and persistently changing patterns within the year

can be captured by the seasonal component. In economic time series, the cycle component

can represent the dynamic features associated with the business cycle (or the output gap).

In economic policy, the focus is often on forecasting the variable of interest, not its separate

components. However, we argue that an understanding of the time series decomposition and

the dynamic properties of the underlying components can benefit the forecasting of the variable

of interest.

Unobserved components time series models have a natural state space representation. The

statistical treatment can therefore be based on the Kalman filter and its related methods. The

resulting modelling framework is particularly convenient for the problem of forecasting as we

will illustrate in this Chapter. For example, it provides optimal point and interval forecasts

but it also provides the observation weights for the associated forecasting function. In this way,

forecasts can be expressed directly as functions of past observations.

We present a concise discussion of the forecasting of economic time series on the basis of a

general class of unobserved components time series models. We first introduce the model with

explicit specifications for the components: trend, season, cycle and irregular. The estimation

of parameters is carried out by the method of maximum likelihood in which the likelihood is

evaluated via the Kalman filter. The likelihood is maximized by means of a numerical optimiza-

tion method. Based on the parameter estimates, the components can be estimated using the

observed time series. The actual decomposition of the time series into trend, seasonal, cycle

and irregular can then be visualized. Model adequacy can be diagnosed using the standard

test statistics applied to the standardised one-step ahead prediction errors. This approach to

time series analysis implies a specific approach to the modelling of time series. It is somewhat

different compared to the Box-Jenkins analysis. For example, in the unobserved components

time series approach we do not require the differencing of a time series towards a stationary

process. The nonstationary properties of a time series are explicitly formulated by a selection

of the components in the decomposition. The Box-Jenkins approach requires that the observed

time series has been differenced into a stationarity process. Although the two resulting method-

ologies are distinct, the model classes both belong to the linear Gaussian family of models and

both can be formulated as linear dynamic processes.

This Chapter is organised as follows. Section 2 provides a comprehensive review of un-

observed components time series models. Section 3 discusses the methodology of state space
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analysis. We introduce the state space model, we give illustrations of how unobserved com-

ponent time series models can be formulated in state space, we present the Kalman filter, we

discuss maximum likelihood estimation of parameters and we present some diagnostic checking

statistics. In Section 4 we discuss how forecasts can be generated as part of a state space time

series analysis and how observation weights of the forecast function are computed. Various

multivariate extensions of the unobserved components time series model are discussed in Sec-

tion 5. Specifically, we present multivariate time series models with common trends and cycles

and we discuss how a dynamic factor analysis based on maximum likelihood can be carried out

in a computationally efficient way. To illustrate the methodology, we present in Section 6 an

empirical analysis for daily electricity spot prices based on a univariate and a bivariate model.

We present some interesting features of this analysis but we focus primarily on the forecasting

of daily spot prices. Section 7 concludes.

2 Unobserved components time series models

The univariate unobserved components time series model that is particularly suitable for many

economic data sets is given by

yt = µt + γt + ψt + εt, εt ∼ NID(0, σ2
ε), t = 1, . . . , n, (1)

where µt, γt, ψt, and εt represent trend, seasonal, cycle, and irregular components, respectively.

The trend, seasonal, and cycle components are modelled by linear dynamic stochastic processes

which depend on disturbances. The components are formulated in a flexible way and they are

allowed to change over time rather than being deterministic. The disturbances driving the

components are independent of each other. The definitions of the components are given below,

but a full explanation of the underlying rationale can be found in Harvey (1989, Chapter 2)

where model (1) is referred to as the “Structural Time Series Model”. The effectiveness of

structural time series models compared to ARIMA type models is discussed in Harvey, Koop-

man, and Penzer (1998). They stress that time series models based on unobserved components

are particularly effective when messy features are present in the time series such as missing

values, mixed frequencies (monthly and quarterly seasons of time series), outliers, structural

breaks and nonlinear non-Gaussian aspects. An elementary introduction and a practical guide

to unobserved component time series modeling is provided by Commandeur and Koopman

(2007).

2.1 Trend component

The trend component can be specified in many different ways. A selection of trend specifications

is given below.

Local level - I(1) process: The trend component can simply be modelled as a random walk
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process and is then given by

µt+1 = µt + ηt, ηt ∼ NID(0, σ2
η), (2)

where NID(0, σ2) refers to a normally independently distributed series with mean zero

and variance σ2. The disturbance series ηt is therefore serially independent and mutually

independent of all other disturbance series related to yt in (1). The initial trend µ1 is for

simplicity treated as an unknown coefficient that needs to be estimated together with the

unknown variance σ2
η. The estimation of parameters is discussed in Section 3.4.

In specification (2) the trend component is an I(1) process. When this trend is included

in the decomposition of yt, the time series yt is at least I(1) as well. Harvey (1989, §2.3.6)
defines the local level model as yt = µt + εt with µt given by (2). In case σ2

η = 0, the

observations from a local level model are generated by a NID process with constant mean

µ1 and a constant variance σ2.

Local linear trend - I(2) process: An extension of the random walk trend is obtained by

including a stochastic drift component

µt+1 = µt + βt + ηt, βt+1 = βt + ζt, ζt ∼ NID(0, σ2
ζ ), (3)

where the disturbance series ηt is as in (2). The initial values µ1 and β1 are treated

as unknown coefficients. Harvey (1989, §2.3.6) defines the local linear trend model as

yt = µt + εt with µt given by (3).

In case σ2
ζ = 0, the trend (3) reduces to an I(1) process given by µt+1 = µt+β1+ηt where

the drift β1 is fixed. This specification is referred to as a random walk plus drift process.

If in addition σ2
η = 0, the trend reduces to the deterministic linear trend µt+1 = µ1 + β1t.

When σ2
η = 0 and σ2

ζ > 0, the trend µt in (3) remains an I(2) process and is known as

the integrated random walk process which can be visualised as a smooth trend function.

Trend with stationary drift - I(1) process: To extend the random walk trend with a drift

component but to keep the trend as an I(1) process, we can include a stationary stochastic

drift component to obtain

µt+1 = µt + βt + ηt, βt+1 = (1− ϕβ)β̄ + ϕββt + ζt, (4)

with autoregressive coefficient 0 < ϕβ ≤ 1 and where the disturbance series ηt and ζt
are as in (3). The restriction of a positive and strictly less than unity value for ϕβ is

necessary to have a stationary process for the drift βt. In the stationary case, the initial

variable µ1 is treated as an unknown coefficient while the initial drift is specified as

β1 ∼ N[β̄ , σ2
ζ / (1 − ϕ2

β)]. However, when ϕβ → 1 we return to a nonstationary process

for the drift βt and the local linear trend model (3) for µt. The stationary drift process

for βt can be generalised to a higher order autoregressive process and can include moving

average terms. However, in practice it may be difficult to empirically identify such drift

processes without very large data samples.
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Higher-order smooth trend - I(k) process: The local linear trend (3) with σ2
η = 0 is a

smooth I(2) process. The smooth trend component can alternatively be specified as

∆2µt+2 = ζt where the initial variables µ1 and µ2 = µ1 + β1 are treated as unknown

coefficients. To enforce more smoothness in the trend component, we can generalise

the smooth trend specification by ∆kµt+k = ζt where the initial variables µ1, . . . , µk are

treated as unknown coefficients for k = 1, 2, . . .. In the usual way, we can specify the

higher-order smooth trend component by µt = µ
(k)
t where

µ
(j)
t+1 = µ

(j)
t + µ

(j−1)
t , µ

(0)
t = ζt, (5)

for j = k, k − 1, . . . , 1 and where the disturbance series ζt is as in (3). In case k = 2, we

obtain the smooth trend model (3) with σ2
η = 0 where µt = µ

(2)
t and βt = µ

(1)
t . This trend

specification is considered and discussed in more detail by Gomez (2001).

Trend with smooth stationary drift - I(1) process: Although the smoothness of a trend

is a desirable feature for many economic time series, the fact that the smooth trend is an

I(k) process is less convincing. We therefore propose a smooth I(1) trend as given by

µt+1 = µt + β
(m)
t , β

(j)
t+1 = ϕββ

(j)
t + β

(j−1)
t , β

(0)
t = ζt, (6)

for j = m,m−1, . . . , 1 and where the disturbance series ζt is as in (3). In case m = 1, we

obtain the trend with stationary drift model (4) with σ2
η = β̄ = 0 where βt = β

(1)
t . The

autoregressive coefficient 0 < ϕβ < 1 is the same for each β
(j)
t+1 with j = m,m− 1, . . . , 1.

This restriction can be lifted by having different autoregressive coefficients for each j but

generally the parsimonious specification (6) is preferred.

2.2 Seasonal component

To account for the seasonal variation in a time series, the component γt is included in model

(1). More specifically, γt represents the seasonal effect at time t that is associated with season

s = s(t) for s = 1, . . . , S where S is the seasonal length (S = 4 for quarterly data and S = 12

for monthly data). The time-varying seasonal component can be established in different ways.

Fixed dummy seasonal: In case the seasonal pattern is fixed over time, we have a set of

S seasonal effects γ1, . . . , γS which are taken as unknown coefficients that need to be

estimated together with the other coefficients in the model. The seasonal effects must

have the property that they sum to zero over the full year to make sure that they are not

confounded with the trend component, that is

γ1 + . . .+ γS = 0, γt = γt−S, t = S + 1, . . . , n. (7)

For example, when we consider the regression model yt = µ1+γt+εt, with fixed constant

µ1 and fixed seasonal effects, the summing-to-zero constraint is necessary to avoid the
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multicollinearity problem. The constraint

γS = −γS−1 − . . .− γ1

ensures that the S seasonal effects sum to zero. We have S − 1 unknown seasonal coeffi-

cients that need to be estimated.

Time-varying dummy seasonal: In time series applications, it is usually more appropriate

to allow the seasonal pattern to change (slowly) over time. For this purpose we can relax

the summing-to-zero constraint by replacing it with the stochastic equation given by

γt+1 = −γt − . . .− γt−S+2 + ωt, ωt ∼ NID(0, σ2
ω), (8)

where the disturbance series ωt is serially independent and mutually independent of all

other disturbance series, for t = S − 1, . . . , n. The initial variables γ1, . . . , γS1
are treated

as unknown coefficients. When the disturbance variance σ2
ω = 0, we return to the case

of fixed dummy seasonal effects. When the variance σ2
ω is relatively large, the seasonal

pattern will vary quickly over time.

Fixed trigonometric seasonal: A deterministic seasonal pattern can also be constructed

from a set of sine and cosine functions. In this case the seasonal component γt is specified

as a sum of trigonometric cycles with seasonal frequencies. Specifically, we have

γt =

⌊S/2⌋
∑

j=1

γj,t, γj,t = aj cos(λjt− bj), (9)

where ⌊ · ⌋ is the floor function, γj,t is the cosine function with amplitude aj , phase bj ,

and seasonal frequency λj = 2πj/S (measured in radians) for j = 1, . . . , ⌊S/2⌋ and t =

1, . . . , n. The seasonal effects are based on coefficients aj and bj . Given the trigonometric

identities

cos(λ± ξ) = cosλ cos ξ ∓ sin λ sin ξ, sin(λ± ξ) = cosλ sin ξ ± sinλ cos ξ, (10)

we can express γj,t as the sine-cosine wave

γj,t = δc,j cos(λjt) + δs,j sin(λjt), (11)

where δc,j = aj cos bj and δs,j = aj sin bj . The reverse transformation is aj = δ2c,j+ δ
2
s,j and

bj = tan−1(δs,j / δc,j). The seasonal effects are alternatively represented by coefficients

δc,j and δs,j. When S is odd, the number of seasonal coefficients is S− 1 by construction.

For S even, variable δs,j, with j = S/2, drops out of (11) since frequency λj = π and

sin(πt) = 0. Hence for any seasonal length S > 1 we have S − 1 seasonal coefficients as

in the fixed dummy seasonal case.

The evaluation of each γj,t can be carried out recursively in t. By repeatedly applying
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the trigonometric identities (10), we can express γj,t as the recursive expression

(

γj,t+1

γ+j,t+1

)

=

[

cosλj sin λj
− sin λj cosλj

](

γj,t
γ+j,t

)

, (12)

with γj,0 = δc,j and γ
+
j,0 = δs,j for j = 1, . . . , ⌊S/2⌋. The variable γ+j,t appears by construc-

tion as an auxiliary variable. It follows that the seasonal effect γt is a linear function of

the variables γj,t and γ
+
j,t for j = 1, . . . , ⌊S/2⌋ (in case S is even, γ+j,t, with j = S/2, drops

out).

Time-varying trigonometric seasonal: The recursive evaluation of the seasonal variables

in (12) allows the introduction of a time-varying trigonometric seasonal function. We

obtain the stochastic trigonometric seasonal component γt by having

(

γj,t+1

γ+j,t+1

)

=

[

cosλj sin λj
− sinλj cosλj

](

γj,t
γ+j,t

)

+

(

ωj,t
ω+
j,t

)

,

(

ωj,t
ω+
j,t

)

∼ NID(0, σ2
ωI2), (13)

with λj = 2πj/S for j = 1, . . . , ⌊S/2⌋ and t = 1, . . . , n. The S−1 initial variables γj,1 and

γ+j,1 are treated as unknown coefficients. The seasonal disturbance series ωj,t and ω
+
j,t are

serially and mutually independent, and are also independent of all the other disturbance

series. In case σ2
ω = 0, equation (13) reduces to (12). The variance σ2

ω is common to

all disturbances associated with different seasonal frequencies. These restrictions can be

lifted and different seasonal variances for different frequencies λj can be considered for

j = 1, . . . , ⌊S/2⌋.

The random walk seasonal: The random walk specification for a seasonal component is

proposed by Harrison and Stevens (1976) and is given by

γt = e′jγ
†
t , γ†t+1 = γ†t + ω†

t , ω†
t ∼ NID(0, σ2

ωΩ), (14)

where the S × 1 vector γ†t contains the seasonal effects, ej is the jth column of the S × S

identity matrix IS, S×1 disturbance vector ω†
t is normally and independently distributed

with mean zero and S × S variance matrix σ2
ωΩ. The seasonal effects evolve over time as

random walk processes. To ensure that the sum of seasonal effects is zero, the variance

matrix Ω is subject to restriction Ωι = 0 with ι as the S × 1 vector of ones. The seasonal

index j, with j = 1, . . . , S, corresponds to time index t and represents a specific month

or quarter. A particular specification of Ω that is subject to this restriction is given by

Ω = IS − S−1ιι′. Due to the restriction of Ω, the S seasonal random walk processes

in γ†t are not evolving independently of each other. Proietti (2000) has shown that the

time-varying trigonometric seasonal model with specific variance restrictions is equivalent

to the random walk seasonal model (14) with Ω = IS − S−1ιι′.

Harvey (1989, §§2.3-2.5) studies the statistical properties of time-varying seasonal pro-

cesses in more detail. He concludes that the time-varying trigonometric seasonal evolves more

smoothly over time than time-varying dummy seasonals.
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2.3 Cycle component

To capture business cycle features from economic time series, we can include a stationary cycle

component in the unobserved components time series model. For example, for a trend-plus-

cycle model, we can consider yt = µt+ψt+ εt. Next we discuss various stochastic specifications

for the cycle component ψt.

Autoregressive moving average process: The cycle component ψt can be formulated as a

stationary autoregressive moving average (ARMA) process and given by

ϕψ(L)ψt+1 = ϑψ(L)ξt, ξt ∼ NID(0, σ2
ξ), (15)

where ϕψ(L) is the autoregressive polynomial in the lag operator L, of lag order p with

coefficients ϕψ,1, . . . , ϕψ,p and ϑψ(L) is the moving average polynomial of lag order q with

coefficients ϑψ,1, . . . , ϑψ,q. The requirement of stationarity applies to the autoregressive

polynomial ϕψ(L) and states that the roots of |ϕψ(L)| = 0 lie outside the unit circle.

The theoretical autocorrelation function of an ARMA process has cyclical properties

when the roots of |ϕψ(L)| = 0 are within the complex range. It requires p > 1. In

this case the autocorrelations converge to zero when the corresponding lag is increasing,

but the convergence pattern is cyclical. It implies that the component ψt has cyclical

dynamic properties. Once the autoregressive coefficients are estimated, it can be estab-

lished whether the empirical model with ψt as in (15) has detected cyclical dynamics in

the time series. The economic cycle component in the model of Clark (1987) is specified

as the stationary ARMA process (15) with lag orders p = 2 and q = 0.

Time-varying trigonometric cycle: An alternative stochastic formulation of the cycle com-

ponent can be based on a time-varying trigonometric process such as (13) but with fre-

quency λc associated with the typical length of an economic business cycle, say between

1.5 and 8 years, as suggested by Burns and Mitchell (1946). We obtain

(

ψt+1

ψ+
t+1

)

= ϕψ

[

cosλc sin λc
− sin λc cosλc

](

ψt
ψ+
t

)

+

(

κt
κ+t

)

, (16)

where the discount factor 0 < ϕψ < 1 is introduced to enforce a stationary process for

the stochastic cycle component. The disturbances and the initial conditions for the cycle

variables are given by

(

κt
κ+t

)

∼ NID(0, σ2
κI2),

(

ψ1

ψ+
1

)

∼ NID

(

0,
σ2
κ

1− ϕ2
ψ

I2

)

,

where the disturbances κt and κ
+
t are serially independent and mutually independent, also

with respect to disturbances that are associated with other components. The coefficients

ϕψ, λc and σ
2
κ are unknown and need to be estimated together with the other parameters.

This stochastic cycle specification is discussed by Harvey (1989, §§2.3-2.5), where it is
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argued that the process (16) is the same as the ARMA process (15) with p = 2 and q = 1

and where the roots of |ϕψ(L)| = 0 are enforced to be within the complex range.

Smooth time-varying trigonometric cycle: To enforce a more smooth cycle component

in the model, we can modify the cycle specification to let it have so-called bandpass

filter properties. For this purpose, Harvey and Trimbur (2003) propose the specification

ψt = ψ
(m)
t where

(

ψ
(j)
t+1

ψ
(j)+
t+1

)

= ϕψ

[

cos λc sinλc
− sin λc cosλc

]

(

ψ
(j)
t

ψ
(j)+
t

)

+

(

ψ
(j−1)
t

ψ
(j−1)+
t

)

, (17)

for j = m,m− 1, . . . , 1 and where

(

ψ
(0)
t

ψ
(0)+
t

)

=

(

κt
κt

)

∼ NID(0, σ2
κI2),

for t = 1, . . . , n. The initial conditions for this stationary process need to be derived and

are provided by Trimbur (2006). Although more stochastic variables are required for this

specification, the number of coefficients remains three, that is ϕψ, λc and σ
2
κ.

Multiple cycles The dynamic specification of a cycle may be more intricate than the spec-

ifications given above. When a satisfactory description of cyclical dynamics cannot be

provided by a single component, a set of multiple cycle components can be considered,

that is

ψt =
J
∑

j=1

ψj,t, (18)

where each ψj,t can be modelled as an independent cycle process, which is specified as one

of the cycle processes described above. For example, when a time-varying trigonometric

cycle is adopted for each ψj,t in (18) with a different cycle frequency λc, the model can

be used to empirically identify shorter and longer cyclical dynamics from a time series

simultaneously.

2.4 Regression component

The basic model (1) may provide a succesful description of the time series, although it may

sometimes be necessary to include additional components in (1). For example, seasonal eco-

nomic time series are often affected by trading day effects and holiday effects. In other cases

it is evident that a set of explanatory variables need to be included in the model for capturing

specific (dynamic) variations in the time series. Explanatory variables can also be used to allow

for outliers and breaks in the model. Therefore, we extend the decomposition with a multiple

regression effect,

yt = µt + γt + ψt + x′tδ + εt, εt ∼ NID(0, σ2
ε), (19)
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for t = 1, . . . , n, and where xt is a K × 1 vector of predetermined covariates and δ is a K × 1

vector of regression coefficients. Since all components are allowed to change over time, elements

of δ can also be allowed to change over time. A typical specification for a time-varying element

in δ is one of those discussed as a time-varying trend function. However, when we aim to

establish stable relationships between a dependent variable and a set of explanatory variables,

we should keep δ constant for the full sample or, for at least, a large part of the sample.

3 Linear Gaussian state space models

The state space form provides a unified representation of a wide range of linear time series

models, see Harvey (1989), Kitagawa and Gersch (1996) and Durbin and Koopman (2001).

The linear Gaussian state space form consists of a transition equation and a measurement

equation. We formulate the model as in de Jong (1991), that is

yt = Ztαt +Gtǫt, αt+1 = Ttαt +Htǫt, ǫt ∼ NID (0, I) , (20)

for t = 1, . . . , n, and where ǫt is a vector of serially independent disturbance series. The

m× 1 state vector αt contains the unobserved components and their associated variables. The

measurement equation is the first equation in (20) and it relates the observation yt to the state

vector αt through the signal Ztαt. The transition equation is the second equation in (20) and

it is used to formulate the dynamic processes of the unobserved components in a companion

form. The deterministic matrices Tt, Zt, Ht and Gt, possibly time-varying, are referred to as

system matrices and they will often be sparse and known matrices. Specific elements of the

system matrices may be specified as functions of an unknown parameter vector.

3.1 Unobserved component models in state space form

To illustrate how the unobserved components discussed in Section 2 can be formulated in the

state space form (20), we present a number of illustrations.

Basic structural model Consider the model yt = µt + γt + εt with trend component µt as

in (3), seasonal component γt as in (8) with seasonal length S = 4 (quarterly data) and

irregular εt as in (1). We require a state vector of five elements and a disturbance vector

of four elements; they are given by

αt = (µt, βt, γt, γt−1, γt−2)
′ , ǫt = (εt, ηt, ζt, ωt)

′ .

The state space formulation of the basic decomposition model is given by (20) with the
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system matrices

Tt =















1 1 0 0 0

0 1 0 0 0

0 0 −1 −1 −1

0 0 1 0 0

0 0 0 1 0















, Ht =















0 ση 0 0

0 0 σζ 0

0 0 0 σω
0 0 0 0

0 0 0 0















,

Zt =
(

1 0 1 0 0
)

, Gt =
(

σε 0 0 0
)

.

Here the system matrices Tt, Ht, Zt and Gt do not depend on t; the matrices are time-

invariant. The standard deviations of the disturbances in Ht and Gt are fixed, unknown

and need to be estimated. The corresponding variances are σ2
η, σ

2
ζ , σ

2
ω and σ2

ε . It is

common practice to transform the variances into logs for the purpose of estimation; the

log-variances can be estimated without constraints. The unknown parameters are col-

lected in the 4× 1 parameter vector θ. Estimation of θ can be carried out by the method

of maximum likelihood; see Section 3.4.

For the trend component µt in (3) the initial variables µ1 and β1 are treated as unknown

coefficients. For the dummy seasonal component γt in (8) with S = 4, the initial variables

γ1, γ0 and γ−1 are also treated as unknown coefficients. Given the composition of the

state vector above, we can treat α1 as a vector of unknown coeffients. We can estimate

α1 simultaneously with θ by the method of maximum likelihood or we can concentrate α1

from the likelihood function. We discuss the initialization issues further in Section 3.4.

Smooth trend plus ARMA model Consider the model yt = µt + ψt + εt with trend com-

ponent µt as in (5) with k = 3, cycle component γt as the ARMA process (15) with p = 2

and q = 1 and irregular εt as in (1). The state and disturbance vectors are given by

αt =
(

µ
(3)
t , µ

(2)
t , µ

(1)
t , ψt, α5,t

)′

, ǫt = (εt, ζt, ξt)
′ .

The state space formulation has the system matrices

Tt =















1 1 0 0 0

0 1 1 0 0

0 0 1 0 0

0 0 0 ϕψ,1 1

0 0 0 ϕψ,2 0















, Ht =















0 0 0

0 0 0

0 σζ 0

0 0 1

0 0 ϑψ,1σξ















,

Zt =
(

1 0 0 1 0
)

, Gt =
(

σε 0 0
)

.

The system matrices are time-invariant. The unknown disturbance variances need to

be estimated together with the ARMA coefficients ϕψ,1, ϕψ,2 and ϑψ,1. In particular,

we estimate three log-variances and transform the ARMA coefficients such that ψt is
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stationary and the moving average polynomial ϑψ(L) is non-invertible. The unknown

parameters are collected in the 6× 1 parameter vector θ.

For the smooth trend component µt in (5) the initial variables µ
(3)
1 , µ

(2)
1 and µ

(1)
1 are

treated as unknown coefficients. The initial conditions for the ARMA process can be

determined from the unconditional autocovariance function; see Section 3.4. In this case

we treat a part of the initial state vector as unknown coeffients (first three elements) while

for the remaining part we need to derive its statistical properties.

Random walk plus smooth cycle model Consider the model yt = µt + ψt + εt with the

random walk process µt as in (2), cycle component γt as the smooth cycle process (17)

with m = 2, and irregular εt as in (1). The state and disturbance vectors are given by

αt =
(

µt, ψ
(2)
t , ψ

(2)+
t , ψ

(1)
t , ψ

(1)+
t

)′

, ǫt =
(

εt, ηt, κt, κ
+
t

)′
,

and the corresponding system matrices by

Tt =















1 0 0 0 0

0 T 22
t T 23

t 1 0

0 −T 23
t T 22

t 0 1

0 0 0 T 22
t T 23

t

0 0 0 −T 23
t T 22

t















, Ht =















0 ση 0 0

0 0 0 0

0 0 0 0

0 0 σκ 0

0 0 0 σκ















,

Zt =
(

1 1 0 0 0
)

, Gt =
(

σε 0 0 0
)

,

where T 22
t = ϕψ cos λc and T

23
t = ϕψ sin λc. The system matrices are time-invariant. The

unknown disturbance variances need to be estimated together with the discount factor

ϕψ and cycle frequency λc. In particular, we consider three log-variances and enforce

restrictions 0 < ϕψ < 1 and 0 < λc < π via transformations. The unknown parameters

are collected in the 5× 1 parameter vector θ.

For the random walk component µt in (2), the initial variable µ1 is treated as an unknown

coefficient. The initial conditions for the smooth cycle process can be obtained from

Trimbur (2006). The first element of the initial state vector is treated as unknown while

the remaining part has known statistical properties.

3.2 Kalman filter

Consider the linear Gaussian state space model (20). The predictive estimator of the state

vector αt+1 is a linear function of the observations y1, . . . , yt. The Kalman filter computes the

minimum mean square linear estimator (MMSLE) of the state vector αt+1 conditional on the

observations y1, . . . , yt, denoted by at+1|t, together with its mean square error (MSE) matrix,

denoted by Pt+1|t. We will also refer to at+1|t as the state prediction estimate with Pt+1|t as its
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state prediction error variance matrix. The Kalman filter is given by

vt = yt − Ztat|t−1, Ft = ZtPt|t−1Z
′
t +GtG

′
t,

Mt = TtPt|t−1Z
′
t +HtG

′
t, t = 1, . . . , n,

at+1|t = Ttat|t−1 +Ktvt, Pt+1|t = TtPt|t−1T
′
t +HtH

′
t −KtM

′
t ,

(21)

with Kalman gain matrix Kt = MtF
−1
t , and for particular initial values a1|0 and P1|0. The

one-step ahead prediction error is vt = yt − E(yt|y1, . . . , yt−1) with variance Var(vt) = Ft. The

innovations have mean zero and are serially independent by construction so that E(vtv
′
s) = 0

for t 6= s and t, s = 1, . . . , n.

Before the MMSLE at+1|t and the MSE Pt+1|t are computed in the Kalman filter, the MMSLE

of the state vector αt conditional on y1, . . . , yt, denoted by at|t, and its corresponding MSE

matrix, denoted by Pt|t, can be computed as

at|t = at|t−1 + Pt|t−1Z
′
tF

−1
t vt, Pt|t = Pt|t−1 − Pt|t−1Z

′
tF

−1
t ZtPt|t−1, (22)

It then follows that

at+1|t = Ttat|t, Pt+1|t = TtPt|tT
′
t +HtH

′
t.

Formal proofs of the Kalman filter can be found in Anderson and Moore (1979), Harvey (1989)

and Durbin and Koopman (2001). However, the proof of the Kalman filter and related results

can be derived by the use of the following basic lemma.

Recursive lemma: Suppose that x, y and z are random vectors of arbitrary orders that are

jointly normally distributed with means µp and (co)variances Σpq = E [(p− µp)(q − µq)
′]

for p, q = x, y, z and with µz = 0 and Σyz = 0. The symbols x, y, z, p, q, µ and Σ are

employed for convenience and these definitions hold only here. Then:

E(x|y, z) = E(x|y) + ΣxzΣ
−1
zz z, Var(x|y, z) = Var(x|y)− ΣxzΣ

−1
zz Σzx.

The proof of this lemma can be obtained from multivariate normal regression theory; see, for

example, Anderson (1984). The elementary nature of this lemma drives home the point that

the theoretical basis of state space analysis is simple.

3.3 Likelihood evaluation

The Kalman filter can be used to evaluate the Gaussian likelihood function via the prediction

error decomposition, see Schweppe (1965), Jones (1980) and Harvey (1989, §3.4). Given a

model as described in Section 2 for yt, we denote the joint density of y1, . . . , yn by p(y1, . . . , yn)

and the prediction error decomposition is then given by

p(y1, . . . , yn) = p(y1)

n
∏

t=2

p(yt|y1, . . . , yt−1).
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The predictive density p(yt|y1, . . . , yt−1) is Gaussian and has mean E(yt|y1, . . . , yt−1) = Ztat|t−1

and variance Var(yt|y1, . . . , yt−1) = ZtPt|t−1Z
′
t+GtG

′
t = Ft. For a realized time series y1, . . . , yn,

the log-likelihood function is given by

ℓ = log p (y1, . . . , yn) =

n
∑

t=1

log p (yt|y1, . . . , yt−1)

= −n
2
log (2π)− 1

2

n
∑

t=1

log |Ft| −
1

2

n
∑

t=1

v′tF
−1
t vt. (23)

The one-step ahead prediction errors vt and their variances Ft are computed by the Kalman

filter for a given value of the parameter vector θ. To make the dependence of the likelihood

function on the parameter vector θ explicit, we can write ℓ = ℓ(θ).

3.4 Parameter estimation

In a state space analysis we are concerned with two groups of parameters that need to be

estimated for a given model specification. The first group is contained in parameter vector θ, see

Section 3.1 for an illustration. The second group consists of initial variables for the unobserved

(non-stationary) processes and the regression coefficients such as δ in (19). The initial conditions

for unobserved stationary processes can be derived from the theoretical autocovariance function.

Maximum likelihood estimation of θ: The log-likelihood function (23) can be maximised

with respect to θ numerically using a numerical quasi-Newton method. For example, the

method of Broyden-Fletcher-Goldfarb-Shanno (BFGS) is generally regarded as computa-

tionally efficient in terms of convergence speed and numerical stability; see Nocedal and

Wright (1999). The BFGS iterative optimization method is based on information from

the gradient (or score). Analytical and computationally fast methods for computing the

score for a current value of θ in a state space analysis are developed by Koopman and

Shephard (1992). The BFGS method is terminated when some pre-chosen convergence

criterion is satisfied. The convergence criterion is usually based on the gradient evaluated

at the current estimate, the parameter change compared to the previous estimate or the

likelihood value change compared to the previous estimate. The number of iterations

required to satisfy these criteria depends on the choice of the initial parameter values, the

tightness of the chosen criterion and the shape of the likelihood surface.

An alternative method for maximum likelihood estimation is the EM-algorithm; see

Shumway and Stoffer (1982) and Watson and Engle (1983) in the context of a state

space analysis. The basic EM procedure works roughly as follows. Consider the joint

density p(y1, . . . , yn, α1, . . . , αn). The Expectation (E) step takes the expectation of the

state vectors conditional on y1, . . . , yn and the Maximization (M) step maximizes the re-

sulting expression with respect to θ. The E step requires the evaluation of the estimated

state vector using a smoothing algorithm related to the Kalman filter, see de Jong (1989).

The M step is usually carried out analytically and is simpler than maximizing the full
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likelihood function directly. Given the ”new” estimate of θ from the M step, we return

to the E step and evaluate the smoothed estimates based on the new estimate. This it-

erative procedure converges to the maximum likelihood estimate of θ. Under fairly weak

conditions it can be proven that each iteration of the EM algorithm increases the value of

the likelihood. The EM converges to a maximum of the likelihood as a result. In practice

it is often found that while the EM gets to a neighbourhood of the maximum quickly,

it converges to the maximum slowly. Therefore a mix of EM and direct maximization

is often advocated. In case θ only contains parameters in Gt and Ht, Koopman (1993)

shows that the EM can be modified toward a fast and simple procedure.

Estimation of initial states and regression coefficients: The non-stationary trend and

seasonal components, as discussed in Section 2, rely on initial variables that are treated

as fixed unknown coefficients. When regression effects are added to the model, we also

have fixed unknown regression coefficients. In the illustrations in Section 3.1 it is shown

that these initial states and regression coefficients are collectively placed in the initial

state vector α1. We can therefore concentrate on the estimation of the initial state vector

α1.

Preferably we estimate α1 jointly with θ by the method of maximum likelihood as dis-

cussed above. However, numerical problems may arise when the likelihood function is

maximised with respect to a high-dimensional parameter vector that joins θ and α1. For-

tunately, the direct maximization with respect to α1 can be avoided since the one-step

ahead prediction error vt is a linear function of the initial state α1, that is vt = vot + vαt α1

where vot is equal to vt when the Kalman filter (21) is started with a1|0 = 0 and P1|0 = 0

and vαt is a function of the system matrices Zt, Tt, Gt and Ht. Given this linear depen-

dence, the initial state vector can be concentrated out from the log-likelihood function

in the usual way. We then maximize the concentrated likelihood with respect to θ. The

implementation of this approach is developed by Rosenberg (1973).

Tunnicliffe-Wilson (1989) and Harvey and Shephard (1990) argue convincingly that the

maximum likelihood estimation of α1 can lead to bias in the estimation of unknown

variances in θ; for example, it can increase the probability that a variance is estimated

as zero while the true variance is not zero. They advocate the estimation of θ via the

maximimization of a marginal or diffuse likelihood function with respect to initial state

α1. In a state space analysis, this approach can be embedded within a unified treatment

for the initialization of the Kalman filter with respect to initial states and regression

coefficients; see Ansley and Kohn (1985), de Jong (1991) and Koopman (1997). It is

recently argued by Francke, Koopman, and de Vos (2010) that the strict implementation

of the marginal likelihood function for models with initial states and regression coefficients

is preferred for parameter estimation.

Stationary conditions for the initial state: When the state vector only contains station-

ary variables, the initial conditions for α1 can be obtained from the theoretical autocovari-

ance function. In a time-invariant stationary state space model we have αt+1 = Tαt+Hǫt
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with E(αt) = 0 and P = Var(αt) for t = 1, . . . , n. It follows that P = TPT +HH ′ with

solution

vec(P ∗) = (I − T ⊗ T )−1vec(HH ′).

Efficient algorithms for solving Riccati equations can be used to compute P ∗ when its di-

mension is large, as discussed in Anderson and Moore (1979) and Hindrayanto, Koopman,

and Ooms (2010). Since this solution also applies to α1, we can initialize the Kalman

filter (21) with a1|0 = 0 and P1|0 = P ∗.

In most models, the initial state vector α1 contains initial variables and regression co-

efficients as well as stationary variables; see also the illustrations in Section 3.1. The

Kalman filter initialization methods of de Jong (1991) and Koopman (1997) account for

such general model specifications.

3.5 Diagnostic checking

The assumptions underlying the models in Section 2 are that all disturbances, such as εt, ηt
and κt, are normally distributed, are serially and mutually independent and have constant

variances. Under these assumptions the standardised one-step ahead prediction errors (or

prediction residuals) are given by

et =
vt√
Ft
, t = 1, . . . , n. (24)

The prediction residuals are also normally distributed and serially independent with unit vari-

ance. We can investigate whether these properties hold by means of the following large-sample

diagnostic tests:

Normality: The first four moments of the standardised forecast errors are given by

m1 =
1

n

n
∑

t=1

et, mq =
1

n

n
∑

t=1

(et −m1)
q, q = 2, 3, 4.

Skewness and kurtosis are denoted by M3 and M4, respectively, and when the model

assumptions are valid they are asymptotically normally distributed as

M3 =
m3
√

m3
2

∼ N

(

0,
6

n

)

, M4 =
m4

m2
2

∼ N

(

3,
24

n

)

.

see Bowman and Shenton (1975). Standard statistical tests can be used to check whether

the observed values of M3 and M4 are consistent with their asymptotic densities. They

can also be combined as

MN = n

{

S2

6
+

(K − 3)2

24

}

,

which asymptotically has a χ2 distribution with two degrees of freedom under the null

hypothesis that the normality assumption is valid. The QQ plot is a graphical display
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of ordered residuals against their theoretical quantiles. The 45 degree line is taken as a

reference line (the closer the residual plot to this line, the better the match).

Heteroscedasticity: A simple test for heteroscedasticity is obtained by comparing the sum

of squares of two exclusive subsets of the sample. For example, the statistic

H(h) =

∑n
t=n−h+1 e

2
t

∑h
t=1 e

2
t

,

is Fh,h-distributed for some preset positive integer h, under the null hypothesis of ho-

moscedasticity.

Serial correlation: The correlogram of the prediction residuals should not reveal significant

serial correlation. A standard portmanteau test statistic for serial correlation is based on

the Box-Ljung statistic suggested by Ljung and Box (1978). This is given by

Q(k) = n(n+ 2)

k
∑

j=1

c2j
n− j

,

for some positive integer k, where cj is the jth correlation:

cj =
1

nm2

n
∑

t=j+1

(et −m1)(et−j −m1).

Although these statistics can be used for formal hypothesis testing, in practice they are used

as diagnostic tests. Diagnostic graphic tools can be even more informative and they include a

time series plot, a histogram and a correlogram of the prediction residuals.

4 Forecasting

The unobserved component time series model and its state space analysis is used for a model-

based approach to the forecasting of economic time series. A convenient property of the Kalman

filter and related methods is their ability to account for missing observations in a data set. In a

relatively straightforward manner, the filter can be amended when it is confronted with missing

data. Some calculations are skipped while other calculations do not need to be changed. This

feature is of high practical relevance as many data-sets have at least some data points not

available. In our context, it also offers a solution to the forecasting problem since we can

regard the future observations as a set of missing observations. As a consequence, the Kalman

also delivers all necessary computations for forecasting.

Since the model is linear, the forecast function for yn+h is a linear function of the observations

y1, . . . , yn, for h = 1, 2, . . .. We first consider forecasting as filling in missing values, and then

discuss the computation of observation weights for forecasting.
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4.1 Missing values and forecasting

The Kalman filter produces one-step ahead predictions of the state vector as denoted by at+1|t

with its error variance matrices Pt+1|t for t = 1, . . . , n. In the Kalman filter, if yτ is missing,

we do not know its value or its one-step ahead prediction error vτ . The missing information on

vτ can be reflected by having Fτ → ∞ as it indicates that we have no information about vτ .

The consequences of having Fτ → ∞ in the Kalman filter is that Kτ → 0 while the remaining

computations in the Kalman filter can still be carried out. The prediction step of the Kalman

filter reduces to

at+1|t = Ttat|t−1, Pt+1|t = TtPt|t−1T
′
t +HtH

′
t, (25)

for t = τ as Fτ → ∞. Note that at|t = at|t−1 and Pt|t = Pt|t−1 for t = τ . The implementation of

a Kalman filter with missing data entries is straightforward and relies simply on a conditional

statement: if yt is observed, carry out the Kalman filter as in (21); if yt is missing, carry out

the prediction step (25). Missing entries are allowed throughout the data sample y1, . . . , yn,

individually and in blocks.

The treatment of missing values can be adopted to the computation of forecasts and their

forecast error variances. After the last observation, we add a series of missing values to the

data set and carry on with the Kalman filter. It treats the future observations as missing values

in the way described above. We then effectively obtain the state prediction estimates an+h|n
and its prediction error variance matrix Pn+h|n for h = 1, 2, . . .. The observation forecasts

ŷn+h|n = E(yn+h|y1, . . . , yn) and its error variance matrix Vn+h|n = Var(yn+h − ŷn+h|y1, . . . , yn)
are then computed by

ŷn+h|h = Zn+han+h|n, Vn+h|n = Zn+hPn+h|nZ
′
n+h +Hn+hH

′
n+h,

for h = 1, 2, . . .. This simple treatment of missing observations and forecasting is one of the

attractions of state space analysis.

4.2 Observation weights of forecast function

It is of interest to know how observations are weighted when forecasting future observations.

For a linear time series model with time-varying components, the forecasting weights should

gradually decline for observations further from the forecast origin as they become less relevant.

When time-variations are more volatile, weights should decline more rapidly compared to cases

where time-variations are smooth. A special algorithm for computing forecasting weights in a

state space analysis is discussed in Koopman and Harvey (2003). Here we concentrate on the

observation weights for y1, . . . , yn when forecasting observation yn+h. For the Gaussian linear

state space model (20), the MMSLE of yn+h is a linear function of the observations y1, . . . , yn,

that is

E(yn+h|y1, . . . , yn) = ŷn+h|n =

n
∑

j=1

wj(ŷn+h|n)yj, (26)

where wj(x̂) represents the weight associated with observation yj for the computation of x̂.
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The predicted state estimate for αt is based on the observations y1, . . . , yt−1 and can be

written as

at|t−1 =

t−1
∑

j=1

wj(at|t−1)yj. (27)

The Kalman filter (21) provides the means to compute these weights by storing the Kalman

gain matrices. Then the following backward recursion is implemented,

wj(at|t−1) = Bt,jKj , Bt,j−1 = Bt,jTj − wj(at|t−1)Zj, j = t− 1, t− 2, . . . , 1, (28)

with initialization Bt,t−1 = I. It computes the observations weights for the state prediction

at|t−1. The observation weights for ŷt|t−1 = Ztat|t−1 are given by Ztwj(at|t−1) but they can also

be directly computed from the backward recursion

wj(ŷt|t−1) = bt,jKj, bt,j−1 = bt,jTj − wj(ŷt|t−1)Zj, j = t− 1, t− 2, . . . , 1, (29)

where bt,j = ZtBt,j and with initialization bt,t−1 = Zt.

When missing values are present in the data set, the Kalman filter can still be applied.

Assume that yτ is missing, recursion (28) at time j = τ reduces to

wτ (at|t−1) = 0, Bt,τ−1 = Bt,τTτ . (30)

Hence missing value can be accommodated in algorithms for computing observation weights in

a state space analysis. The forecasting observation weights can therefore be obtained from (30).

Using the initialisation of (28) to time t = n+ h, that is Bn+h,n+h−1 = I, and applying (30) for

j = n + h − 1, . . . , n + 1 we obtain wn(an+h|n) = Tn+h−1 . . . Tn+1Kn. The weights for wj(aτ |n)

are computed by (28) when yj is observed and by (30) when yj is missing, for j = n− 1, . . . , 1.

The forecasting observation weights are then computed by Ztwj(at|t−1) or directly via (29).

4.3 Autoregressive representation of model

The weights also lead to the autoregressive representation of any unobserved components time

series model in Section 2. It follows from the Kalman filter prediction error equation that

yt = Ztat|t−1 + vt where vt ∼ NID(0, Ft). Furthermore, it follows from (27) and (28) that we

can express yt as

yt =

∞
∑

i=0

φiyt−i + vt, φi = bt,t−iKt−i, vt ∼ NID(0, Ft). (31)

This specification is effectively a valid autoregressive model representation of a time series yt
that is generated by an unobserved components time series model. The infinite lag order is

in practice not necessary as bt,t−i → 0 as i → ∞ with t fixed. We therefore conclude that

φ(L)yt = vt with autoregressive lag polynomial φ(L) provides a valid representation of any

unobserved components time series model for yt.
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5 Multivariate components

In Section 2 we have set out a comprehensive class of unobserved components time series models.

In economic theory one focuses on the dynamic relationships between variables. Hence the need

of econometricians to simultaneously analyze and model a multiple set of related time series.

The multivariate analysis of time series is a challenging task because the dynamic interactions

between time series can be intricate and the number of parameters in a model can increase

rapidly. In this section we will highlight a number of multivariate extensions of decomposition

models together with a number of applications.

5.1 Multivariate trend model

The decomposition models can easily be extended for the modelling of multivariate time series.

For example, letting yt denote a p× 1 vector of observations, the multivariate local level model

for yt is given by

yt = µt + εt, εt ∼ NID(0,Σε),

µt+1 = µt + ξt, ξt ∼ NID(0,Σξ),
(32)

for t = 1, . . . , n, where µt, εt, and ξt are p×1 vectors and Σε and Σξ are p×p variance matrices.

In what is known as the seemingly unrelated time series equations model (32), the series are

modelled as in the univariate situation, but the disturbances driving the level components are

allowed to be instantaneously correlated across the p series. When slope, seasonal, or cycle

components are involved, each of these three components also has an associated p× p variance

matrix allowing for correlated disturbances across series.

The dynamic properties implied by the trend decomposition model (32) further depend on

the specifications of the variance matrices Σε and Σξ. When both variance matrices are of full

rank, the dynamic interactions between the time series can alternatively represented by

yt = Λξµ
†
t + Λεε

†
t , µ†

t+1 = µ†
t + ξ†t , ε†t ∼ NID(0,Dε), ξ†t ∼ NID(0,Dξ), (33)

where the various terms are defined implicitly by relating the terms in (32) with those in (33)

via

µt = Λξµ
†
t , εt = Λεε

†
t , Σε = ΛεDεΛ

′
ε, Σξ = ΛξDξΛ

′
ξ,

where Dε and Dξ are p×p variance matrices. Since we have assumed full rank variance matrices,

it is also true that µ†
t = Λ−1

ξ µt and, similarly, ε†t = Λ−1
ε εt. The representation (33) shows in a

more transparent, direct way how the time series relate to each other. The loading matrix Λξ
typically determines the long-term movements or dynamics between the variables whereas the

loading matrix Λε links the contemporaneous shocks in the time series.

The matrices Λx and Dx can be regarded as the result of the variance matrix decomposition

of Σx, for x = ε, ξ. The variance decomposition Σx = ΛxDxΛ
′
x is not unique, for x = ε, ξ. Since

the number of coefficients in Σx is 1
2
p(p + 1), all elements in the p × p matrices Λx and Dx

cannot be identified in the model. An appropriate set of identification restrictions are obtained
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by assuming that Λx is a lower (or upper) triangular matrix with unit values on the diagonal and

that Dx is a diagonal matrix consisting of positive values. The restrictions imply the Cholesky

decomposition of Σx. For given values of Λx and Dx, the trend can still be transformed without

affecting the model for yt itself. For all orthonormal p×p matrices B and C, such that B′B = Ip
and C ′C = Ip, we can reformulate the model as

yt = Λ∗
ξµ

∗
t+Λ∗

εε
∗
t , µ∗

t+1 = µ∗
t+ξ

∗
t , ε∗t ∼ NID(0, CDεC

′), ξ∗t ∼ NID(0, BDξB
′), (34)

where

Λ∗
ξ = ΛξB

′, µ∗
t = Bµ†

t , Λ∗
ε = ΛεC

′, ε∗t = Cε†t ,

for t = 1, . . . , n. The transformations based on B and C can be exploited to obtain a loading

structure that suits an economic interpretation. We emphasize that the statistical dynamic

properties of yt are the same for all model specifications (32), (33) and (34).

5.2 Common trends and cycles

When the variance matrix of the trend disturbance Σξ has not full rank, the multivariate local

level model (32) implies a common trend component for yt. In other words, when rank(Σξ) =

r < p, the underlying trends of the p time series in yt depend on a smaller set of r common

trends. In terms of the model representation (33), the dimensions of the matrices Λξ and Dξ

are p× r and r× r, respectively. Hence, the trend vector µ†
t represents the common trends and

has dimension r × 1. Since the time series in yt can all have different locations. The locations

of r time series can be determined by the r trends in µ†
t . The locations of the remaining p− r

time series in yt are then adjusted by the constant vector µ̄ in

yt = µ̄+ Λξµ
†
t + εt, µ†

t+1 = µ†
t + ξ†t , (35)

where µ̄ consists of r zero and p − r non-zero values. Common trends in a model allows

interesting economic relations and are related to the concept of cointegration, see Stock and

Watson (1988) and Anderson and Vahid (2011, this volume) where common cycles and trends

are studied using vector autoregressive models.

Common dynamics can also be introduced for other unobserved components in the model.

In particular, common drifts and common cycles are of interest in economic time series. The

basic formulation of a model with common trends and cycles is given by

yt = µ̄+ Λξµ
†
t + Λκψ

†
t + εt, (36)

where µ†
t is the rµ × 1 vector of common trends and vector ψ†

t contains the rψ common cycles.

The loading matrices Λξ and Λκ have dimensions p× rµ and p× rψ, respectively. We can adopt

one of the cycle specifications discussed in Section 2.3 and generalize these to multivariate

processes. For example, a multivariate version of the ARMA process (15) can be considered,

see Shumway and Stoffer (2006, Chapter 5.7). The multivariate version of the cycle process

(16) is known as the similar cycle since the discount factor ϕψ and the cycle frequency λc are
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common to all individual cycles, see the discussion in Harvey and Koopman (1997). We define

the similar cycle process for ψ†
t in (36) by

(

ψ†
t+1

ψ+
t+1

)

= ϕψ

{[

cos λc sinλc
− sin λc cosλc

]

⊗ Irψ

}

(

ψ†
t

ψ+
t

)

+

(

κ†t
κ+t

)

, (37)

where the auxiliary cycle vector ψ+
t has dimension rψ × 1, the discount factor ϕψ and cycle

frequency λc remain scalars and ⊗ is the Kronecker matrix product operator. The rψ × 1

disturbance vectors κ†t and κ+t together with the initial conditions for the cycle vectors are

given by

(

κ†t
κ+t

)

∼ NID(0, I2 ⊗Dκ),

(

ψ†
1

ψ+
1

)

∼ NID

(

0,
1

1− ϕ2
ψ

I2 ⊗Dκ

)

,

and the cyclical disturbance series κ†t and κ
+
t are serially independent and mutually independent.

It follows for the cycle component ψt = Λκψ
†
t in (36) that

E(ψt) = 0, Var(ψt) = ΛκDκΛ
′
κ,

for t = 1, . . . , n. The individual cycle processes in ψ†
t are mutually independent of each other

while those in ψt are correlated with each other. This multivariate generalization of the cycle

process (16) can also be applied to the smooth cycle process (17).

In the decomposition model (36) for yt with trend and cycle components, only time series

with coincident cycles are viable candidates to be included in the model for yt. It can be of

economic interest to investigate whether leads or lags of economic variables are appropriate for

its inclusion in yt. For this purpose, the model can be modified to allow the base cycle ψt to

be shifted for each time series. The phase shift mechanism proposed by Rünstler (2004) allows

the cycle process ψt to be shifted ν time periods to the right (when scalar ν > 0) or to the left

(when ν < 0) by considering

cos(νλc)ψt + sin(νλc)ψ
+
t , t = 1, . . . , n.

The shift ν is measured in real-time so that νλc is measured in radians and due to the periodicity

of trigonometric functions the parameter space of ν is restricted within the range −1
2
π < νλc <

1
2
π. Individual cycles in ψt can be shifted differently by having different ν values. For the ith

equation of (36), we may have

yit = µ̄i + Λξ,iµ
†
t + cos(νiλc)Λκ,iψ

†
t + sin(νiλc)Λκ,iψ

+
t + εit,

where zit is the ith element of zt for z = y, ε, µ̄i is the ith element of µ̄ and Λx,i is the

ith row of Λx for x = ξ, κ with i = 1, . . . , p. For identification purposes, we assume that a

specific equation j contains the contemporaneous base cycle with νj = 0. The remaining p− 1

νi’s can be determined uniquely and their corresponding cycles then shift with respect to the
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base cycle Λκ,jψ
†
t . More discussions on shifted cycles together with an empirical illustration

for constructing a business cycle from a panel of macroeconomic time series are provided in

Azevedo, Koopman, and Rua (2006).

5.3 State space representation, estimation and forecasting

The unobserved components time series models discussed here can be represented in state space

form including their multivariate versions. The multivariate trend and cycle decomposition

model with common components and possibly with shifted cycles remains linear with respect

to the time-varying unobserved components and can therefore be represented in state space

form. Kalman filter and related methods discussed in Section 3 are applicable to multivariate

time series models. The methodology of estimation and forecasting remains as for the univariate

model. However, the dimensions for both the state vector αt and the parameter vector θ are

typically larger and computations are more time-consuming. It is therefore important that all

necessary computations are implemented in a numerically stable and efficient manner; see the

discussions in Koopman, Shephard, and Doornik (1999, 2008).

The forecasting methodology discussed in Section 4 remains applicable in the multivariate

case. In many different settings it is empirically interesting to investigate whether the extra

effort of analysing a set of time series simultaneously also lead to more precise forecasts in

comparison to forecasts based on univariate models. A possible way to diagnose whether other

time series have a high impact in the forecasting of particular series of interest in a multivariate

analysis is to study the observation weights wj(ŷn+h|n) in (26). However, even if the observation

weights imply a high impact of various time series on forecasting, it remains to be seen whether

empirically more precise forecasts are obtained in a multivariate setting.

5.4 Dynamic factor analysis

The multivariate model (36) for yt can be interpreted as a dynamic factor model when the

dimension of yt is large and the dimension of µ†
t is small. In many economic applications, the

dimension of yt can be potentially very large. Stock and Watson (2011, this volume) provide an

excellent survey of dynamic factor models. The task of maximum likelihood estimation and fore-

casting is challenging in models with high-dimensional observation vectors. Sargent and Sims

(1977) and Geweke (1977) are the earliest references discussing maximum likelihood methods

for dynamic factor models. For a relatively low-dimensional model for wage rates, Engle and

Watson (1981) consider maximum likelihood estimation using Fisher scoring to maximize the

likelihood while Watson and Engle (1983) and Shumway and Stoffer (1982) develop a particular

EM method. Methods related to principal components analysis can be adopted as an alterna-

tive to maximum likelihood, see Forni, Hallin, Lippi, and Reichlin (2000), Stock and Watson

(2002) and Bai (2003). The principal component method is computationally fast and easy to

implement compared to maximum likelihood. Recently, there has been a renewed interest in

the use of maximum likelihood estimation for high-dimensional models. Doz, Giannone, and

Reichlin (2006) show that in various cases a maximum likelihood analysis produces more precise

estimates of the factors than a principal component method.
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Jungbacker and Koopman (2008) present results that lead to a computationally efficient

procedure for parameter estimation by maximum likelihood. They argue that the observation

vector yt can be split into a low-dimensional vector and a high-dimensional vector series. For

the evaluation of the likelihood function ℓ(θ), the Kalman filter is only applied to the low-

dimensional series while standard regression calculations suffice for the high-dimensional part

of yt. As a result, large computational gains can be achieved.

6 Empirical illustration: daily spot electricity prices

In this illustration we examine the time series of daily spot electricity prices from the Nord

Pool exchange market in Norway. Nord Pool was established in 1991 as a market for trading

hydroelectric power generated in Norway. Sweden joined in 1996, Finland joined in 1998 and

Denmark joined in 1999. We consider only the Norwegian electricity prices. Most of this

electricity is generated in hydroelectric power stations, and thus supply depends heavily on

weather conditions. The average production capability of Norway’s hydro power plants is

about 113 Terawatt hours (1 TWh = 109 KWh) per year. Nord Pool operates as a day-ahead

market and concentrates on daily trades for electricity delivered on the next day. Daily series

are constructed as the average of 24 price series for the different hours of the day. The resulting

prices are referred to as spot prices and are measured in Norwegian Kroner (NOK, 8 NOK ≈
1 Euro). In the analysis we consider logs of spot prices from the Nord Pool electricity market

from January 4, 1993 to April 10, 2005. This period covers 640 weeks or 4480 days. The daily

spot prices vary over the years and are subject to yearly cycles, weekly patterns, persistent

level changes, and jumps. This dataset has been analysed extensively by Koopman, Ooms, and

Carnero (2007).

6.1 Univariate analysis

To accomodate the long-term movements, intra-yearly and intra-weekly (day of week) effects

and the irregular jumps in daily spot prices, we include a smooth trend, a smooth cycle,

a trigonometric seasonal and an irregular component (respectively) as part of the univariate

unobserved components time series model. Our model of interest is (19) where µt = µ
(k)
t is spec-

ified as the smooth trend (5) with k = 4, the time-varying trigonometric seasonal component is

γt =
∑3

j=1 γj,t and γj,t is specified by (13) with S = 7, the smooth time-varying trigonometric

cycle is ψt = ψ
(m)
t as in (16) with m = 2, and the irregular component is εt ∼ NID(0, σ2

ε). All

disturbances driving the unobserved components in (19) are mutually and serially uncorrelated.

By setting k = 4 for the trend andm = 2 for the cycle component, we have imposed smoothness

restrictions on the decomposition. After limited prior examination, these settings produced the

most satisfactory decomposition. The regression effect x′tδ in the model consists of a set of

constructed dummies for holidays and related special days; they are documented in Koopman,

Ooms, and Carnero (2007). Their model includes an additional six explanatory variables (con-

stant, time index, yearly and half-yearly cosine and sine terms) which we have excluded from

the current analysis since these variables are effectively replaced by the time-varying trend and
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Figure 1: Time Series Decomposition of Daily Spot Electricity Prices

The estimated components from the univariate unobserved components time series model (19) applied to daily
spot electricity prices from the Nord Pool market are presented by four plots: (i) daily spot prices and the
composite estimate of the smooth trend plus regression effects, µt + x′

t
δ; (ii) the estimated seasonal component

(S = 7, the day-of-week effect); (iii) the estimated yearly cyclical component; (iv) estimated irregular compo-
nent. The estimates are based on all observations (smooth estimates). The sample is from January 4, 1993 to
April 10, 2005. The horizontal axis displays the week number for the 640 weeks in the sample. Week 1 refers
to the first full week of 1993 starting on Monday.
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cycle components. The resulting model (19) is extensive and requires a high-dimensional state

vector when the model is placed in state space form. The STAMP 8 software package of Koop-

man, Harvey, Doornik, and Shephard (2008) is used for parameter estimation and forecasting.

The statistical methodology adopted in STAMP is based on maximum likelihood estimation

as discussed in Sections 3 and 4 while further details are provided in Durbin and Koopman

(2001).

We will not discuss the estimation results in much detail. We focus on the forecasting

results which are reported in Section 6.3. However, to provide an insight to whether the time

series decomposition for daily spot prices implied by model (19) is appropriate, we present

the estimated components in Figure 1. The estimated components are based on model (19)

with the unknown coefficients replaced by their maximum likelihood estimates. The estimated

components are obtained from the Kalman filter and the additional smoothing algorithm for

computing estimates of the state vector based on all observations, that is E(αt|y1, . . . , yn); see
de Jong (1989) for more details.

The trend estimate is rather smooth and follows the long-term movements in the daily spot

prices. The sample covers a period of more than 12 years and it includes recession periods and

periods of economic growth. As electricity prices depend partly on economic conditions, we may

suspect that the trend component includes the influence of economic activity on spot prices. The

estimated regression effects (dummies for holidays and related days) are visualised in panel (i)

of Figure 1 as shock deviations from the estimated trend. Although these shocks appear to be

small in comparison with the large swings of the estimated trend, most holiday dummies are

estimated as significant. The overall magnitude of the estimated day-of-week seasonal effects
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is similar to the holiday effects as can be concluded from a visual inspection of panel (ii). The

size of the estimated seasonal effect varies strongly over time. It appears that when the overall

price level is high, the estimated seasonal day-of-week effect is less pronounced. Panel (iii) of

Figure 1 presents the estimated cyclical effect. The cycle is included in the model to capture the

recurring yearly effects due to winter/summer differences but also due to short-term changes

in market conditions which cannot be captured by well-defined explanatory variables. The

cycle estimate may have captured some yearly recurring effects but these appear to be quite

erratic. The cycle estimate clearly captures other short-term effects as well. The estimate of

the irregular component displayed in panel (iv) contains all sudden jumps which are typical in

daily electricty spot prices. A major problem for the irregular component is that we assume it

is a Gaussian disturbance. It is unlikely that the tails of the Gaussian distribution is sufficiently

fat to include all jumps in the irregular. We should consider a more heavy-tailed distribution

for the irregular; for example, the Student’s t-distribution. Despite this last deficiency of our

model specification (19), it appears that the implied model decomposition is appropriate for

Nord Pool daily electricity spot prices.

6.2 Bivariate analysis

Although univariate time series modelling of electricity prices is important in its own right, it

is also interesting to extend the analysis using publicly available data on the determinants of

power demand. The most relevant and closely watched variable for the hydropower market

of Nord Pool is the daily data on Norwegian power consumption. We therefore will attempt

to model the electricity price and consumption series jointly and investigate whether forecast

precision can be improved. The unobserved components model specification remains but we let

each component be a bivariate vector in (19) with full variance matrices for their corresponding

disturbances. In effect, we consider a bivariate seemingly unrelated time series equation model.

We further assume that all explanatory variables (for holidays and special days) apply to both

equations. Since the yearly average of electricity consumption is rather constant over a number

of years, we replace the stochastic trend by a constant level. The daily consumption data is

only available from February 19, 2001 onwards, that is from week 425 onwards. We therefore

need to reduce the sample by approximately 70%. The dimension of the state vector for the

state space form is twice as large as the high-dimensional state vector for the univariate model.

The STAMP 8 software package of Koopman, Harvey, Doornik, and Shephard (2008) is able to

handle the bivariate model (19) with its modification for a constant level in the consumption

equation. Once the model is formulated, STAMP carries out parameter estimation by maximum

likelihood and forecasting of future yt’s.

The time series decomposition of the bivariate time series is presented in Figure 2. The

decomposition for spot prices based on the bivariate model has not changed much compared to

the decomposition based on the univariate model when we consider the estimates from week 425

onwards in Figure 1. This is a convenient result, in particular for the price forecast comparisons

in the next section. Since the univariate and bivariate decompositions for the spot prices are

similar, the dynamic properties of prices implied by both model specifications are also similar.
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Figure 2: Time Series Decomposition of Electricity Prices & Consumption

The estimated components from the bivariate unobserved components time series model (19) applied to (a) daily
spot electricity prices and (b) electricity consumption, both for the Nord Pool market, are presented by two
columns of four plots: (i-a) daily spot prices and the composite estimate of the smooth trend plus regression
effects; (i-b) daily consumption and the composite estimate of the constant level plus regression effects; (ii-
a,b) the estimated seasonal component (S = 7, the day-of-week effect); (iii-a,b) the estimated yearly cyclical
component; (iv-a,b) estimated irregular component. The estimates are based on all observations (smooth
estimates). The sample is from February 19, 2001 to April 10, 2005. The x-axis displays the week number for
the 215 weeks in the sample. Week 425 refers to the first full week of 2001.

450 500 550 600

5

6

7
(i−a)

450 500 550 600

−0.25

0.00

0.25

0.50
(i−b)

450 500 550 600

−0.05

0.05

(ii−a)

450 500 550 600

−0.005

0.000

0.005

0.010
(ii−b)

450 500 550 600

0

1

(iii−a)

450 500 550 600

−0.25

0.00

0.25

0.50
(iii−b)

450 500 550 600

−0.2

0.0

0.2

(iv−a)

450 500 550 600

−0.025

0.025

(iv−b)

We can then measure the effect of including consumption in our analysis accurately. The

decomposition for consumption seems appropriate as well. The time series is decomposed into

a constant and a prominent smooth intra-yearly cycle. In addition, the time-varying seasonal

(for day-of-week effect), the regression effects and the irregular component are clearly present

in the series.

6.3 Forecasting results

Here we present and compare forecasting results for the univariate and bivariate models (19).

These results are given for illustrative purposes only. Serious conclusions cannot be taken

from these results. We show that forecasting results can vary and that a single model is not

necessarily providing the most accurate results in all cases. The design of our limited forecasting

study is as follows. For the univariate model, we consider four estimation samples which all

start at week 1 but end at different weeks: (1) 636, (2) 637, (3) 638 and (4) 639. For these four

different samples, we estimate the parameters in our model by maximum likelihood and we

forecast the next seven days. Since the actual observations in our forecast horizon are available

for all four samples, we can compute the (one-step, . . . , seven-step ahead) forecast errors. The

weeks 638 and 639 are non-standard weeks as they are subject to calendar effects due to the

special days of Maundy Thursday (March 24, 2005), Easter Monday (March 28, 2005) and

those in between. It is anticipated that electricity prices and consumption drop during such

periods.

We then compute the mean absolute percentage error (MAPE) for the one- to seven-days

26



ahead forecasts, cumulatively within every single week only. For a formal definition of MAPE

and related precision measures, we refer to Makridakis, Wheelwright, and Hyndman (1998).

In this study, the MAPE for day d is computed as the average of d absolute percentage errors,

for d = 1, . . . , 7. In Table 1, we report the MAPE values for the four different samples. We

also report the MAPE values that are obtained from the spot price forecasts implied by the

bivariate model. All computations are carried out by the STAMP software package.

Table 1: Forecasting results

We present the mean absolute percentage errors (MAPE) for the forecasting of one- to seven-days ahead of log
average daily electricity spot prices. We have carried out the forecasting analysis based on the univariate (uni)
model (19) and its bivariate (biv) counterpart with full variance matrices for each component. In the bivariate
model, the second time series is log daily electricity consumption and its trend component is replaced by a
fixed constant. The parameters are estimated by maximum likelihood using four different samples. The one-
to seven-days ahead forecasts of the log spot prices are computed for the next seven days. The first forecast is
for Monday, March 14, 2005 in Week 637. The last forecast is for Sunday, April 10, 2005 in Week 640. Weeks
638 and 639 contain calendar effects for Maundy Thursday (March 24, 2005) and the days until Easter Monday
(March 28, 2005). The MAPE for Monday is based on the single error for Monday and is therefore equal to its
absolute percentage error. The MAPE for Sunday summarizes the average forecasting performance for the full
week (seven days).

estimation sample up to week 636 week 637 week 638 week 639
forecast target week 637 week 638 week 639 week 640
considered model is uni biv uni biv uni biv uni biv

horizon – day

1 – Monday 0.83 1.11 0.15 0.07 0.83 1.01 0.92 0.27
2 – Tuesday 0.86 0.94 0.51 0.53 1.20 1.36 0.74 0.20
3 – Wednesday 1.43 1.55 0.67 0.79 1.40 1.52 0.62 0.16
4 – Thursday 1.94 2.09 0.64 0.88 1.71 1.75 0.60 0.14
5 – Friday 1.69 1.93 0.65 0.72 2.01 2.00 0.60 0.30
6 – Saturday 1.62 1.95 0.58 0.69 2.26 2.17 0.67 0.43
7 – Sunday 1.61 2.05 0.68 0.90 2.44 2.27 0.79 0.56

The main conclusion is that the bivariate model does not produce more precise forecasts

necessarily. Although an important related variable is included in the analysis, it does not give

a guarantee that the implied forecasts from a more extended model is more precise in all cases.

A clear distinction between the two models is only obtained for the last sample in which the

daily spot prices in week 640 are forecast. For this sample, the spot price forecasts from the

bivariate model are much more precise. In the first two samples, the univariate forecasts are

somewhat more precise. In the third sample, the univariate forecasts for the first three days

are more precise while the forecasts from the bivariate model are more precise for the last days.

We should emphasize, however, that the estimation sample for the bivariate analysis is much

shorter (starting at week 425) than the estimation sample for the univariate analysis (starting

at week 1). Finally, when considering multivariate models for analyzing time series, it should

be kept in mind that no guarantees can be given about increases in forecast precision, relative

to the forecast precision obtained from a univariate analysis.
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7 Conclusion

In this paper we have discussed the state space analysis of unobserved components time series

models for univariate and multivariate time series. This class of linear time series models

consist of components that stochastically evolve over time and can represent trend, seasonal,

cycle and other effects in a time series. Each unobserved component can capture a specific

dynamic feature from the time series. It is important that the model provides an effective

description of all dynamic features in the data. Although the model can be used for different

purposes, an important application is forecasting. The state space analysis provides practical

tools to construct an appropriate model, to estimate unknown parameters and to compute the

forecasts. Diagnostic statistics and graphics based on one-step ahead prediction errors are of

key importance for the formulation of a satisfactory model. The empirical model ideally implies

a forecast function that can be justified by common sense. For this purpose, the observation

weights in the forecast function are of interest. The illustration concerns daily electricity spot

prices and it shows how an analysis based on unobserved components time series models can

lead to the generation of optimal forecasts.

Although the linear Gaussian class of unobserved components time series models is general

in many ways, extensions towards nonlinear and non-Gaussian features in time series are often

required. Nonlinearities can be introduced in various ways. The measurement and transition

equations of the state space formulation may depend on past observations. This extension

opens up a wide range of models with parameters that depend on past observations. Since the

Kalman filter operates by conditioning on past observations, it still yields optimal estimates.

Nonlinearity also arises when the measurement and transition equations include nonlinear func-

tions of the state vector. For example, in the macroeconomic literature much attention is given

to the dynamic stochastic general equilibrium (DSGE) model which is effectively a nonlinear

state space model as shown by Gaĺı (2008). A model becomes non-Gaussian when disturbances

need to be generated by heavy-tailed distributions; see the discussion of our illustration in Sec-

tion 6. Nonnormality may also be intrinsic to the observations. For example, when we need to

analyse a time series of small counts, a normal approximation is unreasonable and we may need

to account for this by considering a Poisson distribution. Extending the unobserved component

models to a non-Gaussian class is highly relevant for the modelling of economic and financial

risk; for example, a credit risk application is considered by Koopman and Lucas (2008). Pa-

rameter estimation and forecasting future observations require simulation-based methods when

time series models include nonlinear and/or non-Gaussian features; an introductory treatment

of such methods is provided by Durbin and Koopman (2001, Part II).
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