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Abstract

This paper discusses a time-series model for daily tax revenues. The main feature

of tax revenue series is the pattern within calendar months. Standard seasonal time

series techniques need to be modi�ed, because the number of trading days per calendar

month varies from month to month and from year to year. The model is an unobserved

components model, with a trend and seasonal components that vary over time. The

seasonality for inter-month and intra-month movements is modelled using stochastic

cubic splines. The model is made operational and used to produce daily forecasts at

the Dutch Ministry of Finance. A front-end for model con�guration and data input is

implemented with Visual C++, while the econometrics and graphical diagnostics are

built around Ox, and SsfPack, which implements general procedures for the Kalman

�lter and state space models.
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1 Introduction

Daily forecasts for tax revenues play an important role in day-to-day cash management at

the Treasury. Money markets should not be disturbed by surprise shocks due to last-minute

lending or borrowing amounts of the central government. The size of these shocks can be

diminished using tax revenue forecasts that are as realistic as possible. The main purpose

of the statistical daily time series model is to process information of revenues on previous

days systematically, and as eÆciently as possible. Central government outlets are usually

known at least one day ahead. So, forecasts several steps ahead can also be used to monitor

the monthly targets for the budget.

Forecasting daily time series is a diÆcult task that has to performed on an on-line basis.

State space modeling with its recursive estimation techniques and corresponding statistical

methodology is an attractive method. The dominating feature of many daily time series is

a seasonal pattern that changes persistently over time. Many interesting seasonal models,

including simple regression models and Holt-Winters-type smoothers, are suited for analy-

sis in state space form. This allows for statistical testing of di�erent models against each

other. Proper use and monitoring of a sophisticated statistical model is not trivial. The

model should be run online without the regular assistance of a recent Ph.D. in statistics.

Fortunately, modern computer technology makes this possible. The basic procedures for

estimation, �ltering and smoothing algorithms are available in a well documented package,

Ssfpack, Koopman, Shephard, and Doornik (1999) for the object-oriented matrix program-

ming language Ox, Doornik (1998). Procedures to put well known structural and ARMA

models into state space are also supplied in the package. Day-to-day forecasting only in-

volves updating the database and pushing a button. The menus can be made in a Visual

programming language, like Visual Basic or Visual C++.

Setting up the basic model and the diagnostics is the subject of this paper. Once the

model is up and running one can modify and completely reestimate it in an interactive

(point-and-click) environment. Here graphical output is of primary importance. For this

purpose we use GiveWin 1.2, see Doornik and Hendry (1996). In order to avoid unwanted

trial-and-error modelling we set up the model in a so-called structural form, following the

approach Harvey, Koopman, and Riani (1997) introduced for weekly data. The basic idea

is simply a periodic regression model with persistent time varying parameters. The basic

assumptions of linearity and Gaussianity are implied. Non-Gaussian and non-linear exten-

sions are not yet practically feasible, so outliers and regime shifts must be accounted for by

the on-line modeller, e.g. by downweighting observations, or by adding dummy variables.
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Basic econometric knowledge should suÆce to keep the model in shape.

The modeling of daily time series involves several issues which are not well covered in

the literature. We address these issues in x2. We illustrate them using our series of Tax

Revenues, for which we also set up notation. We discuss the main sample characteristics

that are needed for the identi�cation of a basic daily time series model. The remainder of

this paper is structured as follows. Section 3 addresses the speci�cs of structural time series

modeling, the basic idea, the notation corresponding to Ssfpack, the state space formulation

for trend and seasonal components, �ltering, estimation and forecasting. In our case the

treatment of time varying cubic splines, the occurrence of (arti�cial) missing observations,

and the generation of several-steps-ahead forecasts and forecasts for time aggregates deserve

special attention. Section 4 presents our model for daily tax revenues. In x5 we apply our

model, estimating it for data upto 1997 and producing on-line forecasts for 1998. Section

6 suggests some extensions to our approach, including forecast testing by the comparison

with other models, benchmarking forecasts for time aggregates with information from other

models and concludes.

2 Daily time series features

Daily economic time series often have properties that makes them harder to model and

forecast than monthly or quarterly data, for which numerous standard solutions exist. In

addition to the well known features typical of monthly data: trend, season, trading day

and calendar e�ects there are two major problems: First, irregular spacing: the number

of observations varies per month and per year and second, a variance that depends on the

day-of-the month. Many aggregate economic transactions have a pattern with a clear peak

once a month, e.g. salary payments, money circulation, and tax revenues. It is often not

easy to stabilize the variance by taking logs: the (persistently changing) seasonal pattern

is not simply multiplicative and the irregular is not either, moreover, very small (or even

negative in cases of net series) values can be part of a daily time series.

The problem of irregular spacing can be mitigated by an auxiliary time transformation.

We transform the data to more regularly spaced data, such that standard Kalman Filter

techniques kan be applied. The problem of a periodically varying variance of the seasonal

pattern and the irregular is solved by applying a time varying Kalman Filter.

Other features of economic time series present more problems for data at a daily fre-

quency, in particular, strange as it may seem at �rst sight, small sample problems. Daily
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patterns show frequent structural breaks, due to important institutional changes in the

�nancial and in the tax system, much more clearly than monthly or yearly data. These

breaks are often so important that it does not seem to make sense to combine pre-break and

post-break data for the daily model. Note that the structural breaks in the daily pattern do

have an important e�ect on monthly data, when they occur around the turn of the month!

Since there is usually not too many years of comparable daily data available, we cannot

estimate long term trends and the monthly pattern in a very exible way. This means that

a model for daily data is not well suited for long-term forecasting.

We illustrate daily time series features using a series for Dutch aggregate tax revenues.

Upto 1997 this series also contains a (negative) component of tax restitutions which means

that values close to zero and even negative values can occur. Tax revenues are only received

on bank days: Mondays to Fridays.

Dutch total national daily tax revenues consist of several major components like income

tax, social security premiums, corporate tax, value added tax and a number of smaller

categories, like special duties on gas and alcohol. All of these revenues are compiled per

category on a yearly basis, many revenue categories are compiled on a monthly basis.

However, these �gures are not immediately available after the turn of the period. They

are mostly compiled on a net basis, i.e. revenues minus restitutions. On a daily basis

only total gross tax revenues are available. Yesterday's �gures can be used to forecast

today's revenues. Restitution payments are currently exactly known a few days in advance.

Relevant tax assessments that are due are not available on a daily basis. Monthly data

on (expected) tax revenues per category can be used to evaluate the net monthly sums of

revenues and restitutions. These monthly data can be be expected to play a more important

role for the daily forecasts towards the end of the month. Given realizations upto the last

few days, forecasts for the remaining days of the month will automatically imply a forecast

for the monthly total.

Figure 1 for the daily Dutch central tax revenues in May and June of 1996 and 1997

illustrates the main features. We like to model the conditional mean and variance of this

series for short term forecasting. Many taxes are due on the last bank day of the month.

The majority is collected on the last bank day, but the revenues on the four days leading

up to this day are also substantial. The revenues on the last bank days vary clearly from

month to month. Tax income on the �rst day of the month is also important, but here the

seasonal e�ect is less pronounced, as we shall see below. The intra-monthly income pattern

on the remaining days is not nearly as variable.
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Figure 1: Daily Dutch national tax Revenues in billions of euro

The mean of income clearly depends on the number of bank days that remain until the

turn of the month and on the number of bank days after the turn of the month. The basic

intramonthly pattern in the middle of each month is similar across months. This pattern

does not seem to be a�ected by the number of bank holidays. The data for May illustrate

this for the bank holidays on Ascension day (Thursday) and Whit Monday.

The original data, indexed by the calendar-day-of-the-month, as in Figure 1 are irregu-

larly spaced. Straightforward application of splines (depending on the calendar-day-of-the

month) to �t the intramonthly pattern is not a good idea, see the natural cubic spline �ts

(with 5 equivalent parameters in Figure 1, c.f. Doornik and Hendry (1996)).

The splines seem to describe most of the data well and seem to pick up a local maximum

in income around the middle of the month. The problems with this approach show most

clearly towards the end of June 1996 and June 1997. The �tted income patterns vary across

1996 and 1997, whereas the observed income pattern at the last bank-days-of-the-month is

very similar: the irregular spacing leads to an exaggerated time-variation across years. The

spline estimates (which minimize the sum of squared deviations across all observations) also

show that we might want to vary the weight of the observations and smoothness within the

month. Smoothness can certainly be imposed in the �rst half of the month. The income

pattern around the turn of the month is not smooth. In practice this means that we set
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up a prespeci�ed \mesh" for a cubic spline function with few points in the �rst half of the

month and more points around the turn of the month, c.f. Harvey, Koopman, and Riani

(1997).

We like to set up a model for regularly spaced observations that share the basic pattern

within the month, so that the time distance between two turns of the month becomes

constant. This hopefully enables us to model the data for months with varying numbers

and spacing of bank days in a relatively parsimonious way.

Therefore we need a two-way mapping between our irregularly spaced observations in

calendar time, y� , and approximately regularly spaced observations, yt, for our model.

These regularly spaced observations will be modeled in a discrete time linear state space

model. We index these \state space observations" by t = 1; : : : ; T . The mapping t(� )

de�nes the state space index as a function of calendar time � = 1; : : : ; n. In our case we

use the following functions of calendar time: Y� : Calendar Year, 1993; : : : ; 1999, d� : Day of

the Month, 1; : : : ; 31, m� : Month of the Year, 1; : : : ; 12, w� : Day of the Week, 1; : : : ; 7, h� :

Bank Holiday, 0; 1. The function h� can vary over time and has to be known in advance for

forecasting. The other functions of � are deterministic. In our case Saturdays and Sundays

are bank holidays: h� = 0 if w� = 1 or w� = 7.

Figure 2 gives the time transformation of the data of Figure 1 where we have chosen a

constant underlying grid of 100 points each month. The pattern is now much more regular,

both across years and across months. We have created more missing observations, but this

does not present major problems for our estimation procedure, see x3.
Figure 3 presents a more complete picture of the revenues on the 1461 bank days used

in this paper. The period covers 2132 calendar days in 70 months, March 1993-December

1998.

We plot daily revenues against the year to indicate the presence of trends. We plot daily

revenues against month-of-the year to show the month-of-the-year e�ect. The variance does

not seem to depend on the year or on the month-of-the-year. The variance does depend

on the day-of-the-month. The �gures for the last day of each month, which are seen in

the upper half of the plots, are clearly more volatile than the other days which show in

the lower half of the plots. In the sequel of this paper we use the adjective seasonal to

describe the month-of-the-year e�ect. A seasonal di�erence means the di�erence with the

corresponding value one year before. We use the adjective periodic to describe the day-of-

the-month e�ects in the mean, the variance and the autocovariance. Periodicity refers to

the pattern that occurs once a month. In the next subsection we speci�cy a simple periodic
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Figure 2: Daily Dutch national tax Revenues in billions of euro after time transformation
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Figure 3: Daily Dutch national tax revenues in billions of euro against year and against

month-of-year
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regression model to capture seasonal and periodic properties, before going into the details

of the time transformation for Figure 2.

2.1 Initial regression model

So far, we have mainly looked at the unconditional mean of the series as a periodic function

of calendar time. In this subsection we use a exible regression model to summarize the

main properties of this unconditional mean-function. We use the residuals to estimate the

periodic variances and covariances we would like to exploit in our statistical forecasting

model.

The initial analysis showed a clear periodic variation in the mean of the series. The

dominating e�ects are due to the month-of-the-year and the bank day-of-the-month. It is

possible there is a nonstationary trend component. The variation from month to month

is partly caused by a quarterly e�ect from corporate tax revenues, that one could label

month-of-the-quarter e�ect. This leads to a higher average for January, April, July and

October, see Figure 3. In addition there is a yearly e�ect due to extra salary payments

prior to the summer holidays. This additional month-of-the-year-e�ect is most clearly seen

for June.

As discussed above and shown in Figure 2 there is a clear Banking-day-of-the-month

e�ect which displays clear similarities across months. The mean of the series is mainly

determined by the number of days before the turn of the month.

We suggest a simple regression procedure to identify the main periodicities in the mean

of the series. For the purpose of this preliminary regression analysis we introduce the

bank-day index b� = �15;�14; : : : ; 14; 15, which equals the number of bank days since the

beginning of the sample,r� = 1; : : : ; R minus the number of bank days until the nearest

turn of the month l� = 1; : : : ; L, where l� = 0 for � < 15. Therefore, the last bank day of

the month has b� = 0.

In our sample each month has at least 18 bank days. So each month has observations

with index b� = 1; 2; : : : ; 9 and b� = �8;�7; : : : ;�1; 0. In order to analyze the variance and
covariance function of these 70�18 = 1260 observations we basically regress them on 12�18

dummy variables, each dummy measuring the mean of yt for a particular combination of

b� and m� . However, we do not pool all observations. We construct 18 monthly subseries

for each bank-day index and regress each series on a constant and 11 centered seasonal

dummies. In this way we allow automatically for periodic heteroskedasticity depending on

b� . We present results in Table 1.
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The �rst column summarizes the periodic mean function across all months. It reproduces

the pattern seen in Figure 2 above. The function is smooth except at the exact turn of

the month. The second column averages the residual periodic variance function across all

months. This function is also rather smooth. The periodic standard deviation is clearly

not proportional to the periodic mean. For b = 1 and b = �2 one observes similar means,

but very di�erent variances. For b = 1 and b = �1 we observe similar variances but very

di�erent means. The third column shows a simple estimate of (deterministic) seasonality

for each bank day. Under a white noise assumption for the residuals a 5% critical value

for bR of 0.5 could be used to test the null hypothesis of no seasonality. It is clear that the

process generating the revenues is more seasonal towards the end of the month.

The last columns of Table 1 estimate the serial correlation at daily intervals. Most large

correlations are seen for the days at the end of each month. This could indicate the system-

atic presence of local trends. The only consistent series of negative (but small) correlations

is seen for the revenues of the �rst day of each month. These revenues show a negative

correlation with all 8 previous banking days. These periodic covariances determine also the

periodic variance of the partial sum process towards the end of the month Var
Pi

b=�8 yb,

see Table 2. The variance of the revenues increases the more days are aggregated, but the

variance of the partial sum decreases when the revenues of the �rst day of the following

month included in the sum. Forecasting the time aggregate including the �rst day of the

month is easier than excluding the �rst day. In other words too low or too high aggregate

revenues on the last days of the month are to some extent compensated by high or low

revenues on the �rst day of the following month.

The results of Table 1 clearly motivate a periodic analysis. The results do not give

directions for the speci�cation of a model for seasonality and long term trends in the data.

We present time series plots of the residuals for each of the regressions to further investigate

these points. See Figures 5 and 4. Note the di�erent scales on the plots. The �rst day

and the last days of the month are clearly the most important from a practical �nancial

forecasting point-of-view.
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Figure 4: Residuals from initial regression model for bank days -8 to 0 of each month
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These plots give a nearly complete picture of our sample. They represent 1260 out of

1461 available data points. The plots show local upward trends for a number of days-of-

the-month. A number of outliers can be spotted as well, but these are not too severe. The

residual correlations for the di�erent bank days at monthly lags represented in Figures 7

and 6 enable us to investigate the presence of misspeci�cation of the trend and the seasonal.

Ooms and Franses (1998) used similar plots to discover periodically varying long memory

persistence patterns. There is no clear indication of seasonal misspeci�cation, there is no

clear seasonal pattern in the residual correlation. The correlation function for b = 0, the

most important series of all, increases up to a lag of 3 months before a comparatively

large drop. This might indicate a \quarter e�ect", probably due to persistent changes in

the relative weight of VAT (collected quarterly for many �rms) in total tax revenues. The

residuals indicate a clear misspeci�cation of lower frequency components: A very slow decay

in the autocorrelation function is seen for b = 1; 9;�6;�5;�4;�3;�1; 0.

2.2 Extensions of the regression model

The periodic regression model of Table 1 is of course overspeci�ed. The periodic pattern of

the mean and variance can be modeled using splines with a smaller number of equivalent

parameters, c.f. x3 below. On the other hand the model is still too rigid. The model does

not allow for long term changes in the mean that are clearly present in the data. We should

allow for trends, especially for the days around the turn of the month. We will combine

both ideas in a periodic structural time series model that we de�ne below.

After modeling the bulk of the variation, we may be able to detect a day-of-the-week

e�ect.

The practice of forecasting taxes often involves explanation by macroeconomic or insti-

tutional variables, which are usually only available at an aggregate monthly level. Although

it possible to combine data with mixed observation timing intervals in a dynamic model,

seeHarvey (1989, x6.3.7), this is beyond the scope of the analysis in this paper.

2.3 Procedures for time-transformation from observations to model

The graphs above showed that time transformation may simplify the statistical model for

our data, in the sense that we are better able to exploit the intermontly similarity of the

intramonthly pattern. The timing intervals for the statistical (state space) model will di�er

from the time interval of the observations, not only when the distance between observations

is measured in calendar days, but also when these are measured in bank days.
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Let yt denote the observations for the model. Since we have daily data and both seasonal

and intramonthly e�ects, each observations has a three-way index, j(t): year, s(t): month

of the year, and p(t): day of the month. In our case, j(t) = 1993; : : : ; J , j(t) = Y� ,

s = 1; : : : ; S, s(t) = m� , p(t) = 1; : : : ; P . In general we do not have p(t) = d� . p(t) serves

as the explanatory variable of the periodic spline function. In general the series yt will have

more missing observations than the series y� .

The time transformation leads to di�erent timing intervals for the model and the observa-

tions. The timing interval for the model is shorter than the observation interval. Statistical

solutions to the problems of estimation and prediction for time-invariant components of a

linear dynamic model are discussed by Harvey (1989).

The most straightforward time-transformation was introduced earlier for the model of

Table 1. There we skipped the (201) observations around the middle of the months with

more than 18 working days: the timing interval for the model was e�ectively longer than the

observation interval around the middle of the month, P = 18; p(t) = b� + I[�P=2;0](b� ) � P .
Although this was not too big a problem in our application, this is clearly not a reasonable

solution in more general cases.

As a �rst solution we extended the number of model days per month, P , from 18 to

23, the maximum number of bank days in any month in our sample. This introduces

missing values for the model data around the middle of the month. The timing interval

for the observations and for the model is then still equal to one bank day, except for the

observations in the middle of each month, where the timing interval for the model may vary

from 1 to 6: P = 23; p(t) = b� + I[�P=2;0](b� ) � P , with I[] an indicator function that equals

1 for negative b� . Again, the transformation is determined by the end conditions p = 1

if b� = 1 and p = P if b� = 0 and the break in the middle of the month where b� turns

negative. For some months we have missing values for p = 10; : : : ; 14.

A general procedure for the construction of model days, would be to �x P to a large

value �rst, say P = 100. Compute the number of bank days in each month, say, M(Y� ;m� ).

Then for the end of each observed bank day de�ne p(t) = [(b�� � P=M� ], where b�� is the

number of bank days since the turn of the month and [] denotes rounding to the nearest

integer. The other model observations are treated as missing. Again we have the condition

p = P if b�� =M� , b� = 0. The number of missing model data points now varies from 82 to

77 per month. For Figure 2 we used p(t) = P +1� [(M� +1� b�� ) � =M� ], thereby imposing

the restriction p = 1 if b(� = 1). For di�erent kinds of data sets a di�erent function p(t) may

apply in connection with the observed intra-montly pattern and its changes from month to
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month and from year to year. It is likely to be a good idea to have observations p(t) for knot

positions of the spline. The spline function will be the basis for interpolation of the missing

model data and for forecasting of future values. Note that we treat our data as a stock

variable: the spline estimates the value of our variable at p(t). If yj(t);s(t);p(t) corresponds

to an observation, the spline will estimate yY� ;m� ;d� . An in our case more natural, but

technically still too demanding approach would be to treat our data as a ow variable, so

that the model data time aggregate
Pi+Æ

i yj(t);s(t);p(i) would correspond to an observation.

The simple time transformation with P = 23 and an equal time interval for model and

observations for the majority of the data does not pose these technical problems. Given

state space form of the dynamic regression model one can start forecasting from days with

p = 15; b� = �8 or later in the month, both one-step-ahead and multi-step-ahead, both

for single days and for time aggregates right up to the next day in the following month

with p = 9; b� = 9. The next section presents more details. In the most simple case where

we have white noise homoskedastic errors, and where we treat all regression coeÆcients as

�xed this boils down to the application of recursive regression, where both one-step and

multistep forecast intervals take into account the parameter uncertainty due to estimation.

In the end we want to translate non-missing model data back to observations in calen-

dar time. We �rst translate p(t) back to b�� . Given the bank day number of the month,

b�� , and the calendar variables, w� and h� indicating the position of holidays, it is then

straightforward to compute the calendar day of the month d� .
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Table 1: Descriptive statistics tax income by bank-day of the month

br(�) mean b�b
bRb c(1,b) c(2,b) c(3,b) c(4,b) c(5,b) c(6,b) c(7,b) c(8,b) c(9,b)

-8 105 43 .50 -.04 0.12 -.05 0.02 0.11 0.15 -.06 0.20 -.08

-7 118 31 .79 0.21 0.17 0.07 -.06 0.07 0.18 0.08 0.29 0.32

-6 146 58 .66 0.36 -.04 0.27 0.37 -.07 0.06 0.21 0.17 0.34

-5 188 58 .71 0.55 0.47 0.04 0.35 0.33 0.14 -.06 0.15 0.36

-4 273 67 .75 0.51 0.40 0.53 0.20 0.34 0.37 -.10 0.07 0.14

-3 401 80 .74 0.53 0.60 0.48 0.31 -.16 0.46 0.30 0.13 0.15

-2 666 127 .72 0.26 0.33 0.27 0.13 0.39 -.16 0.11 -.03 0.02

-1 1162 199 .67 0.25 0.66 0.60 0.64 0.52 0.41 0.08 0.51 0.33

0 5214 343 .85 0.40 -.24 0.25 0.18 0.03 0.13 -.10 0.05 0.25

1 679 196 .52 -.16 -.13 -.03 -.12 -.26 -.11 -.22 -.20 -.00

2 169 47 .59 0.05 -.00 -.20 0.04 -.26 -.29 -.20 -.13 0.10

3 110 33 .43 0.17 -.00 0.12 0.08 0.15 -.12 -.03 -.12 -.15

4 92 31 .56 0.09 0.33 0.21 -.00 0.02 0.05 -.17 -.22 -.17

5 85 35 .40 0.45 0.22 0.14 0.16 0.26 0.15 -.17 0.05 0.08

6 94 31 .51 0.18 -.19 -.05 -.33 0.12 0.24 0.12 -.06 0.25

7 87 36 .48 -.23 -.07 -.09 -.00 -.06 -.09 0.13 0.24 -.08

8 94 38 .46 0.08 -.10 0.11 0.13 0.22 -.16 -.09 0.04 0.48

9 98 41 .38 0.37 0.36 0.21 0.27 0.04 0.23 -.32 0.08 0.33

b� indexes position with respect to last bank day of the month. mean: Estimate of constant

in regression model per bank day with centered seasonal dummies for daily tax revenues for b� .

Measurements in 106 Euro. Sample 1993.3-1998.12. b�b: regression standard error.

bRb: correlation of �tted and dependent variable.

c(l; b) is a so-called periodic correlation, cf. McLeod (1994): corr("r,"r�l,br(�)).

For simplicity we assume there are 18 bank days r in each month, so that modulo 18 arithmetic

applies to b. The correlation depends only on the distance between the observations in bank days

and on the index br(�) of the leading observation.

Table 2: Periodic variances of partial sums starting at b = �8

i -7 -6 -5 -4 -3 -2 -1 0 1

s.d. 52 56 93 138 201 256 397 568 558

s.d.: Standard deviation of partial sum of subsequent daily residuals

of periodic regression model of Table 1 from b = �8 to b = i.

Sample 1993.4-1998.12. No degrees of freedom corrections applied.
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3 Structural modeling: speci�cation, estimation and fore-

casting

The purpose is to build a model for short-run-forecasting. The main problem is to estimate

the recurring but persistently changing pattern within the months, averaging across months

and across years in an eÆcient way for forecasting. Structural time series models provide

a convenient statistical tool to solve this problem. For the problem at hand, the structural

time series model suits two aims: �rstly, it decomposes the observed series into unobserved

stochastic processes which provide (after estimation) a better understanding of the dynamic

characteristics of the series; secondly, it generates optimal forecasts straightforwardly using

the Kalman �lter. The estimation of components and the forecasting of the series require

�rst the estimation of parameters associated with unobserved components such as trend,

seasonal and irregular. For this analysis we will use the SsfPack library of Koopman,

Shephard, and Doornik (1999) which provides all Kalman �lter related algorithms and is

implemented for the object-oriented matrix language Ox of Doornik (1998). The basic

aspects of structural time series modeling and the corresponding notation are introduced

in sections 3.1-...

3.1 Structural time series models

An univariate structural time series model which is particularly suitable for many economic

data sets is given by

yt = �t + t + "t; "t � NID(0; �2"); t = 1; : : : ; n; (1)

where �t; t and "t are trend, seasonal and irregular components respectively. The trend

and seasonal components are modelled by dynamic processes which depend on disturbances.

These components are formulated in a exible way and they are allowed to change over time

rather than being deterministic. The various disturbances are independent of each other

and of the irregular component, "t. The de�nitions of the components are given below, but

a full explanation of the underlying rationale can be found in Harvey (1989, chapter 2). The

e�ectiveness of structural time series models compared to ARIMA type models, especially

when messy features in time series are present, is shown in Harvey, Koopman and Penzer

(1998).
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The trend component is usually de�ned as

�t = �t�1 + �t�1 + �t; �t � NID(0; �2�);

�t = �t�1 + �t; �t � NID(0; �2�);
(2)

where the level and slope disturbances, �t and �t are mutually uncorrelated. When �2� is

zero, we have a random walk plus drift, and when �2� is zero as well, a deterministic linear

trend is obtained. A relatively smooth trend, related to a cubic spline, results when a zero

value of �2� is coupled with a positive �2� ; Young (1984) calls this model an `integrated

random walk'.

For the seasonal component we formulate a model which is based on a set of trigono-

metric terms which are made time-varying. This so-called trigonometric seasonal model for

t is given by

t =

[s=2]X
j=1

+j;t; where

0
@ +j;t+1

�j;t+1

1
A =

0
@ cos �j sin�j

� sin�j cos �j

1
A
0
@ +j;t

�j;t

1
A+

0
@ !+

j;t

!�j;t

1
A ; (3)

with �j = 2�j=s as the j-th seasonal frequency and

0
@ !+

j;t

!�j;t

1
A � NID

8<
:
0
@ 0

0

1
A ; �2!I2

9=
; ; j = 1; : : : ; [s=2]:

Note that for s even [s=2] = s=2, while for s odd, [s=2] = (s� 1)=2. For s even, the process

�j;t, with j = s=2, can be dropped. The state space representation is straightforward

and the initial conditions are +j;1 � N(0; �) and �j;1 � N(0; �), for j = 1; : : : ; [s=2].

We have assumed that the variance �2! is the same for all trigonometric terms. However,

we can impose di�erent variances for the terms associated with di�erent frequencies; in

the quarterly case we can estimate two di�erent �2! 's rather than just one. We could

also consider to drop a pair of sine-cosine terms at some frequency which appear not to

be strongly present in the seasonal process. The trigonometric seasonal process evolves

smoothly over time; it can be shown that the sum of the seasonals over the past `year' follows

an MA(s � 2) rather than white noise. More details on the trigonometric speci�cation for

the seasonal process can be found in Harvey (1989, page 56).

3.2 Statistical treatment

The state space form provides a uni�ed representation of a wide range of linear Gaussian

time series models including the structural time series model; see, for example, Harvey (1993,

Chapter 4) and Kitagawa and Gersch (1996). The Gaussian state space form consists of
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a transition equation and a measurement equation; we formulate it, following Koopman,

Shephard, and Doornik (1999) as

�t+1 = Tt�t +Ht"t; �1 � N(a; P ) ; t = 1; : : : ; n; (4)

yt = Zt�t +Gt"t; "t � NID (0; I) ; (5)

where NID(�;	) indicates an independent sequence of normally distributed random vectors

with mean � and variance matrix 	, and, similarly, N(�; �) indicates a normally distributed

variable. The N observations at time t are placed in the vector yt and the N�n data matrix

is given by (y1; : : : ; yn). We treat the tax series as coming from a univariate measurement

equation: N = 1. The m � 1 state vector �t contains unobserved stochastic processes

and unknown �xed e�ects. The state equation (4) has a Markovian structure which is an

e�ective way to describe the serial correlation structure of the time series yt. The initial

state vector is assumed to be random with mean a and variance matrix P but some elements

of the state can be di�use which means that it has mean zero and variance � where � is

large. The measurement equation (5) relates the observation vector yt in terms of the state

vector �t through the signal Zt�t and the vector of disturbances "t. The deterministic

matrices Tt, Zt, Ht and Gt are referred to as system matrices and they usually are sparse

selection matrices. When the system matrices are constant over time, we drop the time-

indices to obtain the matrices T , Z, H and G. The resulting state space form is referred

to as time-invariant. Note that the periodic regression model underlying Table 1 can also

be written in state space form with N = 18, putting the regression coeÆcients in �t and

the corresponding time-varying regressors in Zt. By allowing for heteroskedasticity through

a time-varying Gt, one can also write the periodic regression model as a univariate model

with N = 1. Koopman, Shephard, and Doornik (1999) give examples.

The Kalman �lter is a recursive algorithm for the evaluation of moments of the normal

distribution of state vector �t+1 conditional on the data set Yt = fy1; : : : ; ytg, that is

at+1 = E(�t+1jYt) ; Pt+1 = cov (�t+1jYt) ;

for t = 1; : : : ; n; see Anderson and Moore (1979, page 36) and Harvey (1989, page 104).
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The Kalman �lter is given by

vt = yt � Ztat

Ft = ZtPtZ
0
t +GtG

0
t

Kt = (TtPtZ
0
t +HtG

0
t)F

�1
t

at+1 = Ttat +Ktvt

Pt+1 = TtPtT
0
t +HtH

0
t �KtFtK

0
t

(6)

for t = 1; : : : ; n, and where a1 = a, and P1 = P . vt is the innovation and Ft is variance. Kt

is the Kalman gain: the derivative of the forecast function for the state with respect to the

current innovation. The variance matrix P is given by

P = P� + �P1;

where � is large; for example, � = 106. The matrix P� contains the variances and covari-

ances between the stationary elements of the state vector (zeroes elsewhere) and P1 is a

diagonal matrix with unity for nonstationary and deterministic elements of the state and

zero elsewhere. The number of di�use elements (that is the number of unity values in P1),

is given by d.

It is well-known that the Kalman �lter can compute of the Gaussian log-likelihood

function via the prediction error decomposition for models in state space form; see Schweppe

(1965), Jones (1980) and Harvey (1989, section 3.4). The log-likelihood function is given

by

l = log p (y1; : : : ; yn;') =

nX
t=1

log p (ytjy1; : : : ; yt�1;')

= �nN

2
log (2�)� 1

2

nX
t=1

�
log jFtj+ v0tF

�1
t vt

�
(7)

where ' is the vector of parameters for a speci�c statistical model represented in state space

form (6). The innovations vt and its variances Ft are computed by the Kalman �lter for

a given vector '. Note that the summation in (7) is from 1 to n, but usually the �rst d

summations will be approximately zero as F�1
t will be very small for t = 1; : : : ; d. For more

details on di�use initialisation; see Koopman (1997).

3.3 Signal extraction

Estimation of the unobserved components is usually referred to as signal extraction. The

evaluation of �̂t = E(�tjYn) and variance matrix Vt = var(�tjYn) is referred to as moment
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state smoothing. The state smoothing algorithm we employ is based on de Jong (1988) and

Kohn and Ansley (1989) and is given by

�̂t = at + Ptrt�1; Vt = Pt � PtNt�1Pt; t = n; : : : ; 1; (8)

where rt�1 and Nt�1 are evaluated by the backwards recursion

et = F�1
t vt �K 0

trt

Dt = F�1
t +K 0

tNtKt

rt�1 = Z 0
tF

�1
t vt + L0

trt

Nt�1 = Z 0
tF

�1
t Zt + L0

tNtLt

(9)

for t = n; : : : ; 1. When only the smoothed state �̂t is required, more eÆcient methods of

calculation are available; see Koopman (1993).

3.4 Diagnostic checking

The assumptions underlying a Gaussian model are that the disturbance vector "t is normally

distributed and serially independent with unity variance matrix. On these assumptions the

standardised one-step prediction errors

et =
vtp
Ft
; t = 1; : : : ; n; (10)

are also normally distributed and serially independent with unit variance. We can check

that these properties hold by means of the following diagnostic tests:

� Normality

The �rst four moments of the standardised prediction errors are given by

m1 =
1

n

nX
t=1

et;

mq =
1

n

nX
t=1

(et �m1)
q; q = 2; 3; 4:

Skewness and kurtosis are denoted by S and K, respectively, and are de�ned as

S =
m3p
m3

2

; K =
m4

m2
2

;

and it can be shown that when the model assumptions are valid they are asymptoti-

cally normally distributed as

S � N(0;
6

n
); K � N(3;

24

n
);
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see Bowman and Shenton (1975). Standard statistical tests can be used to check

whether the observed values of S andK are consistent with their asymptotic densities.

They can also be combined as

N = nfS
2

6
+

(K � 3)2

24
g;

which asymptotically has a �2 distribution with 2 degrees of freedom on the null

hypothesis that the normality assumption is valid.

� Heteroskedasticity

A simple test for heteroskedasticity is obtained by comparing the sum of squares of

two exclusive subsets of the sample. For example, the statistic

H(h) =

Pn
n�h e

2
tPh+1

t=1 e
2
t

;

where et is de�ned in (10), is Fh;h-distributed for some preset positive integer h, under

the null hypothesis of homoskedasticity.

� Serial correlation

When the model holds, the standardised forecast errors are serially uncorrelated.

Therefore, the correlogram of the one-step prediction errors should reveal no serial

correlation. A standard portmanteau test statistic for serial correlation is based on

the Box-Ljung statistic; see Ljung and Box (1978). This is given by

Q(p) = n(n+ 2)

pX
j=1

c2j

n� j
;

for some preset positive integer p where cj is the j-th correlogram value

cj =
1

nm2

nX
t=j+1

(et �m1)(et�j �m1):

This test is asymptotically �2 distributed with p degrees of freedom.

3.5 Missing values

When observations yt for t = � ; : : : ; � � � 1 are missing, the vector vt and the matrix Kt

of the Kalman �lter are set to zero for these values, that is vt = 0 and Kt = 0, and the

Kalman updates become

at+1 = Ttat; Pt+1 = TtPtT
0

t +HtH
0

t; t = � ; : : : ; �� � 1; (11)
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similarly, the backwards smoothing recursions become

rt�1 = T 0

trt; Nt�1 = T 0

tNtTt; t = �� � 1; : : : ; � : (12)

Other relevant equations for smoothing remain the same. This simple treatment of missing

observations is one of the attractions of the state space methods for time series analysis.

3.6 Forecasting

Out-of-sample predictions, together with their mean square errors, can be generated by the

Kalman �lter by extending the data set y1; : : : ; yn with a set of missing values. When yn+j

is missing, the Kalman �lter step reduces to

an+j+1 = Tn+jan+j; Pn+j+1 = Tn+jPn+jT
0

n+j +Hn+jH
0

n+j;

which are the state space forecasting equations for j = 1; : : : ; J where J is the forecast

horizon; see also the treatment of missing observations in the previous section. The multi-

step forecast of yn+j is simply given by

ŷn+j = Zn+jan+j; Var(ŷn+j) = Zn+jPn+jZ
0

n+j ; j = 1; : : : ; J:

A sequence of missing values at the end of the sample will therefore produce a set of multi-

step forecasts.

3.7 Time-varying cubic splines

The regression spline function is de�ned as a smooth function through the data points yt

which are a response to the scalar series xt, for which xt < xt+1 and t = 1; : : : ; n. In the

daily tax model, xt is mainly the bank-day-of the month. Harvey, Koopman, and Riani

(1997) used the calendar-day-of-the-year as xt. The spline model is

yt = �(xt) + "t; E ("t) = 0; Var ("t) = �2;

where � (�) is a smooth function which is based on k + 1 knot points (xy0; y
y

0); : : : ; (x
y

k; y
y

k).

The smoothness of � (�) is created by setting its second derivative with respect to x as a

linear function of k + 1 coeÆcients, that is

�00i (x) = [(xyi � x)=di]ai�1 + [(x� x
y

i�1)=di]ai

with di = x
y

i � x
y

i�1 and �i(x) = �(x) for x
y

i�1 < x < x
y

i and i = 1; : : : ; k. The k +

1 coeÆcients ai are assumed �xed and they can be identi�ed by solving a linear set of
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equations. These regression spline equations are obtained as follows: (i) by considering

�00i (x) and using standard integration rules, we get expressions for �i(x); (ii) we enforce the

spline function �i(x) at x = x
y

i to be equal to the known value of yyi ; (iii) we restrict the

�rst derivative to be continuous by enforcing �0i(x
y

i ) = �0i+1(x
y

i ) for i = 1; : : : ; k � 1. Step

(ii) leads to a linear expression for �i(x) in terms of yyi and ai, for i = 0; : : : ; k. Step (iii)

leads to k � 1 linear equations for the k + 1 coeÆcients a0; : : : ; ak in terms of yy0; : : : ; y
y

k.

The `natural' restrictions a0 = ak = 0 allow solving this linear system with respect to the

remaining coeÆcients ai for i = 1; : : : ; k�1. The spline function can now be fully expressed

in terms of yy0; : : : ; y
y

k by

�(xt) = �i(xt) = b0;ty
y

0 + : : :+ bk;ty
y

k; x
y

i�1 < xt < x
y

i ; ; t = 1; : : : ; n;

where the weights w0;t; : : : ; wk;t depend on the knot positions xy0; : : : ; x
y

k and the value for

(or implicitly the position of) xt. For a given set of values yy0; : : : ; y
y

k, the spline function

can be computed for any x
y

0 < x < x
y

k.

The regression spline can be expressed as

�(xt) = w0

ty
y;

where wt = (w0;t; : : : ; wk;t)0 and yy = (yy0; : : : ; y
y

k)
0. In the case that yy0; : : : ; y

y

k are not

known, we can replace them by the coeÆcients �0; : : : ; �k which can be estimated by least

squares. For a given set of data points and a set of knot positions xy0; : : : ; x
y

k, the spline

model can be expressed by the standard regression model

yt = w0

t�+ �t;

where parameter vector � = (�0; : : : ; �k)
0 is estimated by least squares techniques. More

details are given by Poirier (1973, 1976).

The generalisation of time-varying regression splines within the state space framework

is developed by Harvey and Koopman (1993). Time-varying splines are obtained by letting

parameter vector � evolve slowly over time, for example

�t+1 = �t + �t; �t � N(0;��);

where �� is a diagonal variance matrix.

The spline function can be used as a seasonal component within the structural time

series model. The summing-to-zero constraint, which avoids the colinearity with the trend

component, for a time-varying spline can be implemented; the details are given by Harvey

and Koopman (1993). (to be added more lately)

22



4 Model for daily Tax Revenues

4.1 The main model

The model for daily Tax Revenues yt, t = 1; : : : ; n, is given by

yt = w0

t�t + x0tÆ + �t; �t � N(0; �
2
�); (13)

where the time-varying spline function w0
t�t takes account of trend and seasonal variations,

the regression function x0tÆ allows for deterministic e�ects and �t is the irregular. The

spline function depends on a set of knot points which in our case should be placed within

the interval of one month. For ease of exposition, we assume temporarily that one month

consists of a �xed number of bank days, say 20. Further we recall that most of the tax

revenue is received during the last three bank days of the month (day 18, 19 and 20) and

to a lesser extent on the �rst bank day of the month (day 1). It seems therefore sensible

to place knot points at these days and to place another knot at a day in the middle of

the month, say at bank day 10. In this case we have a total �ve knots. The time-varying

parameters �1;t; : : : ; �5;t corresponding with the �ve knots are not known and since it is

argued in section 2 that the e�ect within the month is periodic, we model each parameter

by a basic structural time series model with components trend and seasonal, that is

�i;t = �i;t + i;t; i = 1; : : : ; 5; (14)

where �i;t and i;t are the local linear trend and trigonometric seasonal associated with the

ith knot. The subscript i is also attached to �t, �t, �t and the various t's and !t's.

The stochastic process for the trend is given by (2) with possibly �i;t = 0 and di�erent

variances for �i;t and �i;t and for the di�erent knots. The restriction

�i;t = �j;t; 1 � i; j � 5; i 6= j;

can be enforced.

The trigonometric seasonal process associated with a knot in the middle of the month

may not be pronounced or at least less pronounced compared to the seasonal process of

the last bank day. This is the basic motivation of introducing the exibility of a unique

trend and seasonal component for each knot and it also appeals to the periodic nature of

the daily Tax Revenues as explored in section 2. Nevertheless, the restrictions of i;t = 0

(no seasonality for ith knot), �2i = 0 (�xed seasonal for ith knot) or

i;t = j;t; 1 � i; j � 5; i 6= j;
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may be enforced. Further, di�erent variances can be estimated for di�erent frequencies of

the sine-cosine terms of i;t or some sine-cosine terms may be dropped from i;t.

The state space representation of the full model, where we assume that one year consists

of six months, is given by

yt = Zt�t +Gt"t;

where

Zt =
�
w0

t 
 (1; 0; 1; 0; 1; 0; 1) ; x0t
�
;

and

�t =

2
6666664

�
y

1;t

...

�
y

5;t

Æ

3
7777775
; �

y

i;t =

2
666666666666664

�i;t

�i;t

+i;1;t

�i;1;t

+i;2;t

�i;2;t

+i;3;t

3
777777777777775

; i = 1; : : : ; 5:

The subscript i refers to the ith knot. In a real analysis, one year consists of twelve months

and we need to include (�i;3;t; 
+
i;4;t; 

�
i;4;t; 

+
i;5;t; 

�
i;5;t; 

+
i;6;t)

0 in �
y

i;t for the full model.

This does entails a dimension for the state of m = 13 � 5 = 65 for data with 12 months.

This should be compared with the 20�13 regression parameters in a deterministic periodic

regression model, of the kind presented in the previous section. With 19 knots and and zero

disturbance vectors for the transition equations one obtains the periodic regression model

in state space form.

Further, the transition matrix T is a time-invariant block diagonal matrix as given by

T = diag(T�; T�; T�; T�; T�; I);

where

T� =

2
666666666666664

1 1 0 0 0 0 0

0 1 0 0 0 0 0

0 0 cos �1 sin�1 0 0 0

0 0 � sin�1 cos�1 0 0 0

0 0 0 0 cos �2 sin�2 0

0 0 0 0 � sin�2 cos �2 0

0 0 0 0 0 0 �1

3
777777777777775

;
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and with a year equal to six months. The disturbance vector of the transition equation is

given by

"t =

2
6666664

�t

�
y

1;t

...

�
y

5;t

3
7777775
; �

y

i;t =

2
666666666666664

�i;t

�i;t

!+
i;1;t

!�i;1;t

!+
i;2;t

!�i;2;t

!+
i;3;t

3
777777777777775

; i = 1; : : : ; 5:

Row vector Gt selects �t from "t for the measurement equation and the appropriate distur-

bances for the transition equation are selected by the matrix Ht. In particular we have,

Gt = (��; 0; : : : ; 0); Ht =

2
4 01 diag(H�;1; : : : ;H�;5)

01 0Æ

3
5 ;

where 01 are column vectors of zeroes and 0Æ is a zero matrix with number of rows equal

to the dimension of the regression vector Æ. Further,

H�;i = diag(��i ; ��i ; �!i;1
; �!i;1

; �!i;2
; �!i;2

; �!i;3
); i = 1; : : : ; 5;

where ��i and ��i refer to the level and slope disturbance variances associated with the ith

knot and �!i;j
is the trigonometric seasonal disturbance variance associated with the ith

knot and the jth seasonal frequency (in this section, i = 1; : : : ; 5 and j = 1; 2; 3).

4.2 Irregular number of bank days in a month

The number of bank days in a month is of course varying among di�erent months. We

therefore introduce a scale of P entries in a month where P is some moderately large

number, say P = 100. Assume that the number of bank days in a particular month is M ,

then we can distribute the observations at equal intervals of m entries within the month

where m is the integer closest to P=M . The Kalman �lter will go through to each entry and

treat the entries which are not used as missing values. It is shown in section x.x that the

Kalman �lter and related algorithms can handle missing observations straightforwardly.

However, some consequences of lengthening the scale by P should be taken into account.

For example, the seasonal frequencies of the trigonometric seasonal are de�ned as �j =

2�j=s for j = 1; : : : ; [s=2] but they should be modi�ed to �j = 2�j=(Ps). Also the variances

should be scaled by 1=P although this is not really necessary as long as the results are
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interpreted correctly. Also, the monthly increment of the trend at time t is not the slope

�t but it is P�t.

It is argued in section x.x that extending the sample with missing values, the Kalman

�lter will automatically produce forecasts of the state vector together with the mean square

forecast error matrices. This strategy can still be pursued without further modi�cations.

Of course, forecasting one month ahead now requires P forecasts instead of 1.

4.3 Forecasting monthly totals

to be added later

4.4 Model building and testing

For the exposition of our model and its statistical treatment given in this section, we have

assumed that we need �ve knots within one month of daily observations. Whether this

is appropriate in our case of Tax Revenues of the Dutch Ministry of Finance is to be

investigated in section 4. Here we want to emphasize that decreasing or increasing the

number of knots will not change our approach. Finding the appropriate model for each

knot might be a formidable task. However, we may start with a regression model which is

the model discussed in this section but with all variances set equal to zero except �2� . In

this case the Kalman �lter provides the estimator for �2� , that is

�̂2� = n�1
nX
t=1

F�1
t v2t ;

see Harvey (1993). The �nal state estimator anjn is also provided by the Kalman �lter and it

contains the least squares estimators of the trend, seasonal and regression parameters. The

mean square error matrix of the regression estimates is the matrix Pnjn from the Kalman

�lter. From this analysis we can use the usual t-tests to determine the individual statistical

contribution of each state element. This may be a �rst step to model building. In the same

way we can include or exclude components from knots or exclude knots completely.

When an optimal model is found in terms of a regression model, we may introduce

time-variation of the regression parameter starting with the trend component.
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5 Application and implementation of the model

Structural periodic models for daily data o�er a wide range of possibilities for the online-

modeller and forecaster. Each speci�cation will correspond to di�erent forecasts and forecast

intervals. The identi�cation of the model, i.e. the choice for speci�cation for a particular

appliation, is done in several cycles. After a basic model is implemented and tested, the

analysis of forecast errors and other diagnostics will lead to improvements. When suÆciently

many new data points have been observed it is likely that the model has to be tuned again,

either by reestimating it using a new sample, or by changing a number of its components.

In the implementation of a model for the Dutch ministry of Finance we found that

a kind of integrated developer environment, IDE, for structural time series modelling is

needed if the model is to be used e�ectively on a day-to-day basis. The modelling and

forecasting is performed simultaneously at di�erent levels of sophistication using tools with

di�erent levels of user-friendliness. Today's software makes it possible to develop such an

environment with a small number of people with a limited amount of programming time.

The next subsection recapitulates the tasks of the online-modeller and forecaster of daily

time series. Subsection discusses the implementation of the developer environment for this

task.

5.1 Identi�cation, estimation and diagnostics

Sections 2, 3 and 4 described several aspects of structural time series modeling of daily time

series. Here we recapitulate the modelling menu. At each stage the forecaster has to choose

from several options.

5.1.1 Time transformation

It may be necessary to transform the timing interval of the observations from calendar

time to a more \operational" model time. If there is a clear intramonthly pattern it useful

to work with three indices, where the last 2 indices are strictly periodic, indicating the

model month and the model day respectively. This will often introduce arti�cial missing

observations. Subsection 2.3 described some options.

5.1.2 Model mean components

One must specify models for the intra-monthly mean, i.e. a periodic component, a model

for the intrayearly mean, i.e. a seasonal component, a model for the interyearly mean, i.e.
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a trend component, and �nally a model for the irregular. For a periodic structural model

one may specify di�erent seasonal and trend components for the di�erent periodic indices,

see x4. The seasonal and periodic components can be modelled using stochastic dummies,

splines or trigonometric terms. The stochastic trends can have a �xed or a varying slope.

5.1.3 Knot positions spline

Given the use of splines one must choose the number and positions of the knots. The choice

depends on a priori ideas on local smoothness of the spline and on the familiar trade-o� of

bias and eÆciency.

5.1.4 Variances and autocovariances components

A proper speci�cation of the (time-varying variance) function for the innovations of the

di�erent components is needed to produce eÆcient estimators for the mean function and it

is also required to provide realistic forecast error variances. In practice only a few parameters

modelling these variances can be estimated simultaneously. In the end it may be necessary

to specify the \irregular" as an AR-process to whiten the innovations of the measurement

equation.

5.1.5 Additional regressors for di�erent components

Some variables may be available to explain changes in the di�erent components. E�ects

for a single day-of-the-week, or for single holidays may be captured in extra regressors.

Innovation outliers can be modeled using single dummies.

5.1.6 Relevant sample

The relevant sample for estimation, diagnostics and forecasting has to be chosen. Note that

this sample need not be continuous: patches of additive outlying observations may simply

be treated as missing. One may also delete (or select) the observations for particular days

of the week, month or year. In this way one can specify a periodic model, say for weekdays,

if data for weekends are considered irrelevant for forecasting weekdays.

5.1.7 Estimation

Estimation of the so-called hyperparameters, i.e. the free variances of the innovations of

the di�erent components, is performed by maximizing the (prediction error decomposition)
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of the Gaussian likelihood. The current states of the conditional means and variances of

the di�erent components are available from the Kalman Filter output. The moments for

previous time periods are estimated by smoothing.

5.1.8 Diagnostics

See x3.4 above. One can check for nonnormality, heteroskedasticity and serial correlation

for the innovations, or for the auxiliary residuals of the di�erent components, both intra-

monthly, intermonthly and interyearly. All other familiar and newly developed regression

diagnostics can easily be programmed in Ox using a few lines of code.

5.2 Online Developer environments

Many components of the menu of the previous section have been implemented in various

well documented and tested software packages. The best known program is Stamp, see

Koopman, Harvey, Doornik, and Shephard (1995), which is optimized for \standard" struc-

tural modeling of quarterly and monthly data. Although one can produce many useful

results with Stamp, e.g. by specifying monthly models for the separate days of the week it

is not really �t for day-to-day forecasting. First, it does not allow for data with 3 indices,

therefore it does not allow for periodic models of the kind we are looking for. Second, it

does not allow for the speci�cation of time-varying splines. More importantly, it can only

be used at one level of sophistication and user-friendliness.

Daily online forecasting requires programs at three levels of sophistication and user-

friendliness. At the lowest level one needs a program to import and check new data and

to forecast using an existing model. The user only has to record the observed revenue, put

it in an easily accessible data base speci�ed in calendar time and update the forecasts and

con�dence intervals for the next few days. The forecasts should be presented in calendar

time and compared with the most relevant previous values (last month, or last year) and

forecasts from other sources. Basic computer skills should suÆce to operate at this level.

We labeled this program ETE, Econometric Tax Estimator.

At the second level one may want to see more diagnostics, perform sensitivity ananlysis,

and be able to �ne-tune the model. This requires access to time series plots of components,

standard errors, residuals, historical forecast records. The estimation sample and forecast

sample for the states (in model time) can be changed. Standard components can be intro-

duced or deleted and be made stochastic or deterministic. The number of knots and their

positions can be changed. Individual observations may be downweighted or deleted. The
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hyperparameters can be reestimated occasionally. Regressors can be added. Basic computer

skills and a practical knowledge of basic econometrics and time series analysis should suÆce

to operate at this level. We labeled this program STSM, Structural Time Series Modeller.

At the highest level one may want to change the structure of the model, say a model

with a strong intraweekly pattern, instead of a intramonthly pattern, introduce periodic

seasonal heteroskasticity, or a seasonal or periodic AR component, extend to forecasting for

multivariate series, or introduce non-Gaussian errors. This level requires advanced practical

and theoretical econometric knowledge and programming experience.

At the highest level we use Visual C++, Ox, GiveWin and SsfPack, a visual object

oriented programming language, an advanded object oriented matrix language, a front-

end for (two-index) data manipulations and visualisation, and a package of procedures

for State Space modelling with a strong link with Ox, respectively. Of course, one can

program everything directly in VC++, but this would require an unacceptable amount of

programming time. Both Ox, GiveWin and SsfPack are written in (MS Visual)C(++), so

only functions that combine or extend the functionality of these three programs have to

be programmed in VC++. The programs at the highest level are combined to produce

a second level program for the actual day-to-day modeling, forecasting and testing with

the basic (periodic) structural time series model. They are also used for the production of

the lowest level program for data input and short term online forecasting. Although these

lower level programs will not be changed on a daily or weekly basis, we still consider the

updating of these programs an online activity. Small inconveniences can lead to ine�ective or

improper use of the programs, so the programs need regular updates, both in functionality,

layout and documentation.

Visual C++ is used to set up a database class in model time with three indices. This

class is used to retrieve the data, stored in a text-�le, including the names of the regressors.

Other Visual C++ functions are used to customize the import and export of the model

speci�cation and the test speci�cation in point-and-click menus. Finally there are Visual

C++ functions for the generation of graphs. These graphs are made in GiveWin via calls

of the basic graphical functions of Ox. The graphs can subsequently be edited in GiveWin

if necessary.

Ox is used to perform the econometric computing: interaction with the databases (in our

custom format, in GiveWin format, and in popular spreadheet formats like Excel) deriving

test statistics using matrix notation, computing p-values from statistical functions, setting

up the data in state space form required by SsfPack, and maximizing and analyzing the
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likelihood produced by SsfPack. We have written functions for the interaction with VC++,

to get the data and the model in matrix form. There are functions to interact with SsfPack

and there are functions to present the results in graphs in GiveWin.

Ssfpack is used to set up the state space form for the basic structural components,

but its main task is Kalman �ltering, smoothing and the computation of the likelihood.

A very wide class of models can be put into Ssfpack's format, see Koopman, Shephard,

and Doornik (1999), who also present and explain simple Ox sample programs to generate

relevant applications.

Figures 8{10 give an idea of the look of STSM. Figure 8 shows the intial tasks of the

modeller after loading the data: speci�cation of the model and sample selection. Figure 9

shows the speci�cation of the basic components, in this case a deterministic level and slope

and a stochastic intramonthly spline and periodic heteroskedasticity. The position (and

number) of knots can be speci�ed in other windows. Figure 10 shows the window where

diagnostics for the di�erent components can be selected following Harvey and Koopman

(1992).

5.3 Current model and results

The project we describe in this paper initially focussed on modelling and forecasting only

the last day of each month, since that is the day with the largest mean and variance and

therefore the most relevant from a �nancial point of view. Even this �rst stage model

performed at least as good as the main method currently in use. That method is based on

the distribution of the (remaining part) of a predicted value of the monthly total over the

(remaining) days of the month. The monthly aggregate predictions are based on projections

for the growth of the economy and (changes) in the di�erent tax rates and collection policies.

The parameters describing the current distribution are derived from a weighted average of

the distribution measured for the same bank days, b� , in the same months, m� , in previous

years, Y� � 1; Y� � 2; Y� � 2.
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Figure 8: Main window of STSM after loading data

Figure 9: Model window of STSM to select basic components

Figure 10: Diagnostics window for components STSM
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The development of STSM has now reached a stage where it is much easier to adapt the

model. Following the scheme of x5.1, we have made the following choices. First, for the time

transformation from y� to yt = yj(t);s(t);p(t), we picked P=23 as described and motivated

in x2.3. Second, we chose the following components. For the periodic intramonthly mean

we chose a time-varying spline. For the seasonal intrayearly movement we selected 3�2
deterministic dummy variables, 2 variables for each of the 3 days around the turn of the

month, p(t) = 22; 23; 1: b� = �1; 0; 1. An extra (long) spline function across the whole

year, i.e. depending on P � (s(t)� 1) + p(t) turned out to be insigni�cant. The stochastic

trend is nonperiodic, i.e. it does not depend on p(t), so that it can be taken to measure

the overall level of tax revenues at a daily frequency. It was taken to have a �xed slope.

Third, for the intramonthly spline we chose 10 knots at p = (1; 2; 3; 5; 9; 15; 20; 21; 22; 23),

thereby imposing smoothness only for the middle part of the month. Together with the 6

periodic seasonal dummies this make a state vector of dimension 16 to describe the entire

intrayearly pattern.

Fourth, we could identify four innovation variances, the so-called hyperparameters of the

model, two for the intramonthly spline as discussed below, one for the level component and

one for the irregular. The irregular itself has a periodic variance pattern as described below.

This pattern was estimated using the residuals of the periodic regression model of Table

1, extended with a deterministic trend for each day of the month, for the sample 1993.3.1-

1997.12.23. Fifth, we added three nonperiodic day-of-the week dummies w� = 3; 4; 5, c.f.

x 2 and a dummy measuring the length (in bank days) of the previous month, M(t � P ),

c.f. x 2.3. The latter dummy could measure a trading day e�ect for VAT-revenues, which

are collected after the month in which the value added is created. Sixth, we chose 1993.3.1

{ 1997.12.23 as our estimation sample for the hyperparameters and 1997.1.1 { 1998.12.23

as a forecast period for one-step-ahead forecasts. Seventh, we estimated the model using

maximum likelihood. The results are in Table 3. Eigth, we present the following diagnostics:

time series plots of in-sample and out-of-estimation-sample one-step ahead forecasts errors,

bvt, and standardized forecast errors, bF�1=2
t bvt, both in the estimation sample and in the

forecast sample, and the corresponding (nonperiodic) in-sample ACF, a normality test for

the innovations and a CUSUM plot. The diagnostic graphs are presented in Figures 11{13.

Except for a single outlier in June 1998, our model fared very well upto the middle of October

1998, when an unexpected change in the pattern around the centers of the month appeared.

This example illustrates that one should be able to make small but relevant changes to the

model in a case like this, e.g. by changing the variances of the knots around the middle
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of the month. Finally Figure 14, illustrates the most important aspect of component-wise

analysis: a plot of the component at the end of 1997. This is the type of spline we were

looking for when started to look at time series plots like Figure 1.

1995 1996 1997 1998

-.5

0

.5

1

1995 1996 1997

Residuals <one step>

1995 1996 1997 1998

-2.5

0

2.5

Standardized residuals <one step>

Figure 11: One-step (standardized) forecast errors in-sample 1993.1.1-1997.12.23: ( bF�1=2
t )bvt

Periodic and seasonal heteroskedasticity tests and normality tests for auxiliary residuals

of level and irregular indicate that this basic model does not �t all days and all months

equally well, see e.g. Table 5. Low probabilities in this table indicate rejection of the null

hypothesis of equal variance for two days of the month in favour of the alternative where

the variance on the day with \row index p" is higher. High probabilities reject the null

in favor of the alternative where the variance on the day with \column index p" is higher.

In the last column we see that the variances for p = 4; 7 are \signi�cantly" lower than for

p = 23, the variance for p = 16 is higher than for p = 23, but not signi�cantly. Given the

large number of tests and the stage of the modelling process one should not interpret the

probabilities strictly as p�values for classical hypothesis testing. This outcome should not

come as a surprise since the periodic features of the model are limited in comparison with

the evidence for periodicity presented in Table 1 above.
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Figure 12: One-step ahead forecasts and standardized forecast errors outside estimation

sample for hyperparameters of Table 3
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Figure 13: Diagnostics for standardized forecast errors in-sample bF�1=2
t bvt
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Figure 14: Conditional mean of intramonthly spline at the end of 1997

We can formulate the currently estimated model for yt, t = 1; : : : ; n, as:

yt = w0

t�t + �t + x0tÆ +Gt"t; "t � N(0; �
2
");

where the daily revenues yt, are now measured in 109 Euro, where �t contains the 10

stochastic knots for intramonthly spline and where xt contains 10 explanatory variables, 6

based on s(t) = m� for p = 22; 23; 1, 3 based on w� , and one based on M(t � 23), see also

Table 4 below. All regressors, except for the level, are demeaned so as to have mean (very

close to) zero over the span of a year, so that the level component can be interpreted as the

current value of the mean across all bank days of the year.

The state space form of x 3 for knots of the spline is

�t+1 = �t + �t; �t � N(0;��);

diag(��) = (�21; �
2
1; �

2
1; �

2
2; �

2
2; �

2
1; �

2
1; �

2
1; �

2
1; 0):

The innovation variance for the last knot is also put to zero to avoid identi�cation problem

for the level component. The level component is

�t = �t�1 + �t�1 + �t; �t � NID(0; �2�);

�t = �t�1:

The periodic heteroskedasticity vector for the innovations with \basic" length P = 23 is

estimated by periodic regression and normalized on the variance for p(t) = 22.

G�2
t = (2:648; :147; :054; :067; :088; :059; :077; :070; :048; :102; :102;

:102; :102; :102; :134; :037; :066; :169; :243; :369; :115; 1; 5:74)

The variances for the irregulary occurring p(t) = 10; : : : ; 14 were simply �xed.

The variance estimates in Table 3 indicate a low variability of the spline near the middle

of the month, a larger variability towards the end of the month, as expected from the results
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Table 3: Estimated hyperparameters

�21 �22 �2� �2"

2.8193e-6 7.3364e-007 4.1839e-005 0.017979

Sample 1993.3.1 { 1997.12.23, measured in 109 Euro for

the penultimate bank day of the month, p(t) = 22, b� = �1

of Table 1. The moment estimates for the states of the di�erent components at the end of

1997 are presented in Table 4. The estimate for the level of :66 � 109 Euro per day is above

the sample average, indicating an upward trend. This recursive estimate of this trend (not

reproduced here, but naturally available in STSM) is relatively straight.

6 Conclusion

Although the model of the previous section gives reasonable forecasts, the diagnostics indi-

cate that we can improve the model. We will do this by implementing the model of x4 �rst.
We will also compare our forecasts with naive Holt-Winters type forecasts and see whether

we outperform those signi�cantly. We will also try to incorporate external information on

(predictions for) monthly totals, �rst to adjust the forecasts over longer horizons and second

to test the viability of these external forecasts online.

37



Table 4: Estimated states at 1997.12.23

State mean t-value

�(p = 1) 0.2033 4.99

�(p = 2) -0.3046 -14.96

�(p = 3) -0.3800 -23.96

�(p = 5) -0.3491 -34.01

�(p = 9) -0.36151 -35.04

�(p = 20) 0.0027 0.15

�(p = 21) 0.1246 5.21

�(p = 22) 0.7644 24.34

� 0.6594 15.09

� 0.0001 0.58

Tuesday -0.0190 -5.42

Wednesday -0.0146 -4.33

Thursday -0.0114 -3.32

M(t� P ) -0.0043 -2.34

p(t) = 1; s(t) mod 3 = 1 0.0964 1.54

p(t) = 22; s(t) mod 3 = 1 0.1844 4.77

p(t) = 23; s(t) mod 3 = 1 0.7065 7.61

p(t) = 1; s(t) = 6 0.1659 1.59

p(t) = 22; s(t) = 6 0.3649 5.64

p(t) = 23; s(t) = 6 1.2836 8.18

Estimation sample 1993.3.1 { 1997.12.23

�: spline (see also Figure 14), �: level, �: slope

38



Table 5: Probabilities of F test for heteroscedasticity in third index p :

p 2 3 4 5 6 7 8 9 10 14 15 16 17 18 19 20 21 22 23

1 .11 .08 .00 .07 .39 .01 .68 .24 .05 .64 .84 .89 .28 .11 .88 .49 .76 .30 .68

2 x .50 .07 .72 .83 .14 .96 .68 .32 .93 .98 .99 .73 .56 .99 .90 .97 .74 .95

3 x x .06 .71 .82 .13 .96 .67 .40 .93 .99 .99 .72 .49 .99 .89 .97 .80 .96

4 x x x .98 .99 .64 .99 .97 .86 .99 .99 1.0 .98 .92 .99 .99 .99 .98 .99

5 x x x x .64 .04 .88 .45 .50 .83 .99 .98 .50 .27 .96 .76 .90 .86 .97

6 x x x x x .02 .79 .30 .08 .71 .88 .98 .35 .20 .92 .62 .83 .38 .76

7 x x x x x x .99 .93 .73 .99 .99 .99 .95 .88 .99 .99 .99 .95 .99

8 x x x x x x x .09 .02 .40 .69 .91 .12 .05 .74 .32 .56 .15 .49

9 x x x x x x x x .21 .86 .96 .99 .55 .31 .97 .79 .92 .59 .87

10 x x x x x x x x x .93 .99 .99 .85 .54 .99 .93 .99 .84 .97

11 x x x x x x x x x .91 .99 .99 .79 .60 .99 .91 .98 .80 .96

12 x x x x x x x x x .32 .56 .66 .08 .02 .64 .20 .46 .08 .36

13 x x x x x x x x x .22 .51 .70 .04 .01 .52 .15 .34 .07 .30

14 x x x x x x x x x x .84 .90 .17 .06 .79 .40 .64 .31 .53

15 x x x x x x x x x x x .60 .06 .01 .58 .16 .40 .06 .30

16 x x x x x x x x x x x x .01 .00 .22 .03 .11 .03 .21

17 x x x x x x x x x x x x x .26 .96 .75 .90 .51 .85

18 x x x x x x x x x x x x x x .98 .88 .96 .73 .94

19 x x x x x x x x x x x x x x x .13 .31 .04 .23

20 x x x x x x x x x x x x x x x x .73 .29 .68

21 x x x x x x x x x x x x x x x x x .10 .39

22 x x x x x x x x x x x x x x x x x x .83

23 x x x x x x x x x x x x x x x x x x x

Based on Goldfeld-Quandt-statistics for auxiliary residuals in di�erent subsets p.

Low values reject residual homoskedasticity because of a higher variance for row index p,

Sample 1993.3.1 { 1997.12.23.
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